Dedicated to sustainable,
high performance building

CAGBC launches Zero Carbon Building Micro-Credential

New micro-credential helps build proficiency in low-carbon concepts and applying the Zero Carbon Building Standards.

The Canada Green Building Council (CAGBC) recently launched its Zero Carbon Building Essentials Micro-Credential, a new leaning path designed to help green building professionals develop the knowledge neede d to advance carbon reductions.

“The growing demand for low-carbon building solutions requires building professionals to acquire and integrate new skills and knowledge now,” says Thomas Mueller, CAGBC President and CEO. “Drawing on 20 years’ experience delivering high-quality green building training and the expertise we gained from our Zero Carbon Building program, CAGBC’s new micro-credential will provide the key concepts and insights that Canada’s building professionals need to advance decarbonization today.”

The ZCB Micro-Credential was developed to support Canada’s building sector and meet growing demand for low-carbon buildings and retrofits. With only five years left to meet 2030 carbon reduction targets and another 25 years to achieve decarbonization, Canada’s building sector needs to act now to be prepared for the low-carbon future.

The ZCB-Essentials Micro-Credential builds on insights gained from creating and implementing the Zero Carbon Building Standards, Canada’s first and only building standards focused solely on carbon reductions. Now with over a hundred certified buildings and hundreds more registered, CAGBC has created a micro-credential for building industry professionals seeking to better understand zero-carbon concepts.

“Zero-carbon buildings and retrofits require specific skills and knowledge,” said Mark Hutchinson, CAGBC’s vice president of Green Building Programs and Innovation. “Project teams need to be more integrated and collaborative, using common terminology and approaches that everyone involved can understand, from design through to construction and building operations.”

ZCB-Essentials will focus on low carbon fundamentals and help establish an industry-wide lexicon. The micro-credential starts with the live and interactive “Introduction to the Zero Carbon Building Standards” webinar. Five on-demand courses explore key topics including making the business case for zero carbon, Thermal Energy Demand Intensity, the Zero Carbon Balance, Embodied Carbon and transition planning. To complete the micro-credential, a new interactive workshop will provide a practical look at the latest ZCB Standards. 

Participants that complete the micro-credential will receive a ZCB-Essentials badge through Credly, a global Open Badge management platform. With Credly, participants can secure and share their ZCB-Essentials badge, demonstrating their knowledge of zero-carbon principles to clients and employers.

“Launching a micro-credential for the Zero Carbon Building program is one of the many ways CAGBC continues to advance decarbonization in the Canadian real estate market,” said Mueller. “Along with projects to support transition planning, our Learning program is helping prepare the building sector workforce for Canada’s low-carbon future.”

To learn more about the micro-credential, visit cagbc.org/learn.

Fast + Epp head office

Urban infill building highlights hybrid construction

Completed in 2022, the Fast + Epp Home Office is an elegant, economic and highly transferable example of an urban densification project whose approach to material use is a pragmatic hybrid of mass timber, steel and concrete.

The four-storey mixed use building is located close to the city centre on the south shore of False Creek, an eclectic light industrial area that has undergone dramatic transformation over the past decade.

The 137.1m x 13.3m site is zoned for an FSR of 3.0, of which 1.0 must be an industrial use located at street level. A 1.2m right-of-way reduced the width of the site, forcing a portion of the industrial use to the second level and making vertical fire separations necessary.

Below grade, the reduced width required the elimination of interior columns in favour of a clear span, post-tensioned slab to accommodate a single row of parking and an aisle. This in turn influenced the design of the above ground structure, where clear spanning glulam beams informed both the subdivision of space and the routing of exposed building services.

These constraints required a pragmatic design response, both in the use of space and choice of materials. This approach resonated with Fast + Epp (both client and structural engineer for the project) and with f2a architecture, which aims “to create buildings that are minimal, energy efficient, have healthy interiors and a direct relationship to their site.”

To maximize leasable area within the zoning envelope, floor to floor heights were carefully manipulated according to use; Level 1 being 4.8m; Levels 2 and 3 being 3.6m and the Level 4 penthouse 2.6m. There is an interconnected floor space (IFS) between Levels 3 and 4. There is a 2-hour fire separation between industrial and office occupancies, with 1-hour required for the other floors and supporting structure.

The IFS forms an atrium, serving as a meeting area and social space for the Fast + Epp office. The lower level has a small kitchen, while the upper level accommodates ‘touch down’ work stations and (being smaller than the lower floors) has access to a roof terrace.

Project Credits

  • Owner/Developer Fast + Epp Structural Engineers
  • Architect  f2a architecture
  • General Contractor Companion Construction Ltd
  • Building Code  GHL Consultants
  • Structural Engineer Fast + Epp Structural Engineers
  • Interior Design HCMA Architecture + Design
  • Mechanical Engineering Impact Engineering
  • Photos Michael Elkan
  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Navigating the transformation

The evolving role of wood in sustainable construction

By Peter Moonen

Around the globe, the construction sector is in the midst of a profound transformation. Faced with an array of social, economic, and environmental challenges, the industry is adapting to new demands and regulations. As urban populations swell—80% of the world’s population is projected to live in cities by 2050, with Canada already at 81%—the need for affordable, high-performance multifamily housing has never been more pressing. The sector is grappling with rising operational costs, material expenses, and a shrinking labour force, all while striving to enhance energy efficiency and affordability in rapidly densifying urban areas.

The Carbon Conundrum

Decarbonizing construction is a crucial part of this transformation. For decades, regulations have focused on operational energy, pushing the industry toward buildings with minimal energy demand and related monthly costs. Recently, however, there has been a shift toward addressing the carbon footprint of the construction process itself. Wood, with its low carbon emissions, is emerging as a key player in this shift. As building codes evolve to permit greater use of wood, particularly mass timber, there is a significant opportunity to reduce the carbon footprint of construction.

In Europe, energy efficiency has long been a standard, and now low-carbon building policies are becoming more prevalent. Canadian cities like Vancouver and Toronto are following suit with initiatives to cut embodied carbon in new construction. Provincial and federal governments are also setting carbon reduction targets in their procurement practices, creating a ripple effect across the industry.

The Rise of Mass Timber

The past 15 years have seen a substantial growth in the mass timber sector in both Canada and the U.S. Building codes are increasingly recognizing the potential of mass timber products, which are now being used in structures previously deemed unsuitable because of their height and/or occupancy . Notable examples include Brock Commons/Tallwood House (Photos 1 and 2) , an 18-storey student residence  at the University of British Columbia and the Fast + Epp Home Office Building, a mixed use, 4-storey infill building in Vancouver. These structures demonstrate the viability of mass timber in high-rise and hybrid construction, blending wood with other materials for enhanced performance.

The Importance of Collaboration

For hybrid buildings such as these, designers and specifiers must work closely with contractors and suppliers to ensure that material choices align with the project’s goals. By fostering collaboration, teams can leverage the expertise of various stakeholders, ultimately leading to more innovative and efficient solutions. The transition from traditional construction methods to a hybrid approach is reshaping the way we build in Canada.

Code Changes

Changes to building codes have been instrumental in this shift. For instance, the National Building Code now allows encapsulated mass timber construction (EMTC) up to 12 stories, with some jurisdictions permitting up to 18 stories. This increased acceptance is largely due to rigorous research by the National Research Council of Canada and other organizations, which has validated the performance capabilities of mass timber and engineered wood products.

Peter Moonen is National sustainability Manager for the Canadian Wood Council.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Amexon Development Corporation wins prestigious IPAX Americas Property Award

The Residences at Central Park project by Amexon Development Corporation has won the coveted IPAX Americas Property Award for “Best Sustainable Residential Development” in Canada.

The globally-recognized IPAX Americas Awards honour outstanding achievements across the real estate sector from nine global regions, awarding projects that exemplify innovation, superior quality, and environmental responsibility.

Amexon’s award-winning Residences at Central Park in Toronto —a 12-acre master-planned community of five towers— contains numerous green technology measures, some of which include:

In the building:

• Vegetated roofs reduce energy consumption and absorb rainwater

• Photovoltaic modules supplement the building’s power needs

• High-performance thermal building envelope minimizes unwanted solar gain and heat loss

• Over 1,500 electric car charging stations service every parking space, including visitor parking spaces, a first in North America

• Energy-efficient LED light fixtures and motion sensors in corridors and common areas

• Intelligent building automation system for heating and cooling controls in common areas

• Next-generation building mechanical systems feature improved air flow and HEPA filtration systems

• Central building water filtration system

• On-site car-share service and bicycle-share service

• Convenient access to transit

In each suite:

• Individually metered electrical and water usage provide control over consumption and water-wise fixtures for showers, sinks and dual-flush toilets

• Individually controlled and programmable comfort systems to control heating and cooling from smartphone

• Low-voc finishes and significant use of hard-surface flooring for easy maintenance

“The Award is a testament to our ongoing commitment to sustainability and forward-thinking design,” said Ashling Evans, General Manager of Real Estate at Amexon Development Corporation.

The Residences at Central Park also recently won the Ontario Home Builders’ Association’s Project of the Year (People’s Choice Award) and named a finalist for the BILD Green Builder of the Year and the OHBA Green Building of the Year.

The project seamlessly integrates with the adjacent East Don Parkland to create a mixed-use community that represents the future of sustainable urban living in North America. centralparktoronto.com

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

New all-Canadian platform

Meeting sustainable building compliance in less time

What is it? – EcoSpex is a verified product specification platform designed to revolutionize how construction materials are specified for green and healthy buildings.

Who is it for – EcoSpex supports manufacturers by automating and digitizing the environmental certifications and other relevant documentation of their products on one platform so that Developers, Owners, Architects, Engineers, General Contractors, Interior Designers, and sustainability professionals can cut the time it takes to decide the suitability of products for sustainable building from hours to minutes.

Why Now, Why Canadian?

EcoSpex consulted with the Federal Government, numerous companies and Industry Associations across Canada to discover the need for an all-encompassing, fully digitized one-stop platform that collects, verifies and automates environmental certifications of manufacturers’ products accessible in Canada and suitable for Canadian climates. 

The platform quickly provides an accurate set of documents to assure project teams that a product can meet sustainability and performance goals and compliance with LEEDv4, LEEDv5, WELL®, ILFI, International Passivhaus Institute, Fitwell, Green Globes, BOMA and BREEAM.

EcoSpex Low Carbon Platform allows project teams to:

  • Access a Trusted Process
  • Streamlined Product Evaluation
  • New Product Alerts
  • Get Guidance
  • Powerful Search & Compare Tools

Ready to specify products faster while meeting green and healthy standards?

Contact Julie Scarcella today: julie@ecospex.com

705-445-1256

www.ecospex.com

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Prefabricated balconies Bring benefits in time, cost and performance

By Sam Estall

Prefabrication and modular construction are innovative approaches that can benefit a building project, and this includes balconies.

Reducing the time on site by not needing to manufacture balconies in-situ can be a time and cost-effective way to manage balconies on a development. Delivering fully assembled units means not only a decrease in cost, but also a reduction in risk.

And, since the floor of the prefabricated balcony is not continuous with the floor of the interior space, thermal bridging is all but eliminated.

Pre-finishing as much as possible in the factory reduces the requirement for secure storage on site – a further benefit particularly ideal for projects in city centres like Toronto or Vancouver where site space can often be extremely limited.

On-site health and safety issues, such as the risk of errors and potentially costly project delays due to bad weather, can be reduced with a prefabricated solution.

Finally, this increase in quality stretches out to quality assurance too – prefabricating balconies in factory conditions ensures a high degree of quality control which is almost impossible to achieve on site.

Prefabricated balconies do need to be designed to ensure compatibility with modular construction processes. Ensuring that the balcony design integrates seamlessly with other building systems, such as façade elements and structural supports, can enhance overall project coordination and efficiency.

Compliance with step codes in Canada must also be considered. Having a prefabricated balcony can lead to sustainability benefits, but making sure that balcony designs comply with relevant building codes and regulations, including requirements for structural integrity, fire safety, and accessibility, are crucial for ensuring code compliance.

Prefabrication is reinventing modern balcony construction – as time goes on, we at SAPPHIRE are seeing signs that the modular approach to balcony manufacturing could be on its way to becoming the norm.

With the various benefits of a prefabricated approach such as faster installation times, minimized thermal bridging, and quality assurance, a building development can benefit from not only a streamlined approach, but a lighter, safer, kinder one too, with more possibilities than ever before.

To learn more about how a prefabricated solution could benefit your project, visit balconies.global/visit-us-canada-showroom.

Sam Estall, Content Marketing Manager, Sapphire Balconies Ltd.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Institutional (Large) Award

Manitou A BI BII Daziigae, RRC Polytech – Winnipeg, MB 

Jury Comment: “This project successfully resolves a complex program that includes the integration of a brick and beam heritage structure. It incorporates a variety of well thought out details and design solutions, achieving a harmonious relationship with its historic context, providing engaging communal spaces, and setting a technical precedent with its ‘shape-shifting’ photovoltaic cladding.”

Manitou a bi Bii daziigae is a post-secondary learning hub that unites a repurposed brick and beam heritage building with new construction, creating an engaging crossroads in Winnipeg’s historic Exchange District – the city’s Innovation Alley.

Targeting LEED Gold Certification, the 9,300 sq.m. building provides flexible, high-tech, and interactive spaces that nurture creativity and collaboration, and connects students with education and industry professionals to facilitate social innovation, enterprise and pioneering research. 

These aspirations informed the design process, and the completed building reflects a sense of wonder, imagination, empathy, mystery and passion. It is hoped that the Innovation Centre will inspire these qualities in students and faculty.

The facade of the new building is made of Building Integrated Photovoltaic (BIPV) panels that change colour depending on the angle of view and the weather.

This innovative concept – a Canadian first – conceals solar cells behind nano-coated glass panels. Their shape-shifting appearance animates the building conveying a sense of wonder that is an outward expression of the path of learning and innovation.

The building exemplifies regeneration and renewal at multiple levels. It reinforces City policy for urban renewal in the city core, undertakes adaptive re-use of a heritage structure in accordance with City requirements for restoration and re-use, and involves the full remediation of a brownfield site.

The historic Scott Fruit Warehouse has been rehabilitated for academic use and carefully integrated into the overall development. Key character-defining elements, including masonry walls and wood windows, have been restored to maintain their historic appearance and upgraded to enhance energy efficiency, ensuring sustainable performance well into the future.

A  view down the Elgin Plaza with the glazed bridge and the Scott Fruit Building on the right. Series 900 Double Hung windows (dual pane with two coatings of low e) and Series 458 Fixed windows (three coatings of low e) by Winnipeg-based Duxton Windows & Doors were installed into new insulated walls on the interior side of the existing brick walls and behind the existing storm windows of the Scott Fruit Warehouse Building. New rough openings were made larger than existing brick openings to hide window frames in the wall for more visible glass area.

The facade of the new building includes Building Integrated Photovoltaic (BIPV) panels that change colour depending on the angle of view and the weather. Elastochem’s Insulthane Extreme. Used both internally above and below grade to achieve a thermal, air and vapour control layer, it was sprayed onto Dorken Delta-MS Drainboard in the below grade section while above grade only 2lb foam was necessary. 

The agora borders the atrium. The building is equipped with a high-efficiency central ERV system, specifically an RG 2000, by Winnipeg-based Tempeff. Acting as the building’s lungs, the ERV not only recovers heat, but also factors in humidity making it the best choice for occupant comfort in a cold climate. The ERV makes use of Dual-Core technology, allowing for continuous fresh air supply and frost-free operation in this climate.

Project Credits

  • Architect  Diamond Schmitt
  • Joint Venture Architect  Number TEN Architectural Group
  • Owner/Developer  RRC Polytech
  • General Contractor  Akman Construction Ltd
  • Landscape Architect  HTFC
  • Electrical Engineer  SMS Engineering Ltd
  • Mechanical engineer  Epp Siepman Engineering
  • Structural Engineer  Crosier Kilgour & Partners
  • Building Science  RDH Building Science
  • Photos  Doublespace photography and Lindsay Reid

Project Performance

  • Energy Intensity  112 KWhr/m2/year
  • Reduction in Energy Intensity  45%
  • Water Consumption from municipal source  934 litres/occupant/year
  • Reduction in Water Consumption  41%
  • Construction materials diverted from landfill  82%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

INTERVIEW WITH: Anthony Owolabi, PACE Canada Volunteer

PACE Canada getting a foothold

Originating in California, the property assessed clean energy (PACE) program offered by PACE Canada wants to make energy efficiency and renewable energy upgrade measures affordable to all Canadians.

What is PACE?

Property Assessed Clean Energy (PACE) is an innovative financing tool which property owners can use to upgrade the energy efficiency of their buildings and install renewable energy systems with no money down and with repayment through their property tax bill. The source of funds is usually private lenders who are looking for long term, low risk investments.

The key requirements of a PACE program are that the building owner must own the property and must be paying (or be able to pay) property taxes: secondly the program will cover 100% of the financing for these types of measures:

• renewables such as solar panels and geothermal heating systems

energy efficiency upgrades such as insulation and windows

In the last five years in the USA, over 220,000 PACE projects have been completed with over $6B invested.

Who is PACE Canada?

PACE Canada is a non-profit, education and advocacy organization. We are dedicated to bringing the PACE program to Canada, and in the process will create thousands of jobs and dramatically reduce Canada’s GHG footprint.

Our vision is for every building in Canada to be optimized with renewable energy and energy efficiency measures to achieve net-zero performance – and for PACE financing to be the tool that makes the measures affordable to all.

Can you explain a little more how the financing system works?

The PACE administrator acts as a coordinator between investors (lenders) and home/property owners (buyers). Investors lend the money to home/property owners and money flows to the contractor who completes the job.

Once the project is complete, the PACE Administrator facilitates the placement of a property tax lien and the home/property owner starts repayment via their property tax bill.

Since investors provide long-term, fixed interest rate money, the model is usually cash flow positive from day one. Energy savings are meant to more than offset the increase in taxes.

What are the available markets for PACE Financing in Canada?

There are two very distinct markets for PACE financing – C Pace (commercial) and R Pace (residential). Even though there are similarities, there are major differences when it comes to implementation processes and approvals for each market.

Think of both programs sharing the DNA of the cat family, but one is a kitten and one is a tiger.

Based on US market data, the average PACE financing per project has been $456,000 for C-PACE projects and $24,000 for R-PACE projects. The largest single C-PACE financed project to date is $32 million. A C PACE best practices guideline can be found at http://www.c-pacealliance.com: (Well-Designed-C PACE-Programs-2018-07-02)

Does PACE require government involvement even down to the municipal level?

Even though the loan repayment is made through the property tax system, the municipality should have only two simple tasks – place the tax lien and collect/remit the annual payments. All other tasks should be handled by the PACE Administrator – approve contractors, projects, and upgrade types allowed; and find the investors.

What are the full economic benefits?

1. Energy Savings to property owners: Since the target is to be net positive cash flow from day 1, property owners save money on their energy bills.

2. Increased property value: Unlike subjective upgrades like countertops and paint, PACE upgrades are quantifiable and calculations can show increased property value. This feature can be translated into a higher price at the time of sale.

3. Green Jobs: Apart from the public good benefits of reduced green house gases, many new jobs are created. Statistics show that for every million dollars invested, 15 new market transition jobs are created.

4. Reduced fiscal debt: Since PACE attracts private investors, it reduces the use of public tax dollars in the retrofit economy.  Governments don’t have to provide rebates, subsidies, or give-aways that contribute to increased public debt levels.

What are the next steps for PACE Canada?

PACE Canada is committed to advocating for the adoption of a best practices PACE model across Canada. We will continue our efforts to educate governments and politicians on PACE and its economic benefits (see the website at PACECanada.green)

We will be expanding our membership base by organizing educational events on PACE and its components and to help the public understand all the PACE benefits.

THE ROTUNDA

High-performance office building rejuvenates downtown neighbourhood

Occupying a prominent downtown corner across from Victoria’s historic City Hall, this mixed-use commercial complex includes two levels of underground parking, a street level with landscaped boulevards and public plazas flanked by ground floor retail spaces. The six-storey, 10,362 m² west building and 13-storey, 16,299 m² east building house class-A office space above.

By Franc D’Ambrosio, Founding Principal, Erica Sangster, Principal, D’AMBROSIO architecture + urbanism and Andy Chong, Managing Principal, INTEGRAL GROUP.

Urban Design and Architecture

The developer’s aim was to contribute to the resurgence of Victoria’s downtown, provide much needed high-quality office space and set a design benchmark in the regeneration of a moribund city block. The building forms have been sculpted to define street edges and create public spaces that are welcoming, human scaled, and integrated with both the street fabric and the building activity.

The fundamental massing strategy was to divide the site laterally and thereby locate two separate and distinct buildings.  As a complex of two buildings, the project is in scale with the surrounding context. The separation has allowed for gracious public open spaces and also facilitated phased construction.  The two buildings share aspects of form and materials, but differ in their massing and façade composition. Both outwardly express their function, with slender office wings and primary circulation routes clearly articulated in concrete and glass.

The public focus of the project is the Rotunda, a 500m² sky-lit atrium that brings natural light into the centre of the west building and also functions as the return air plenum for the ventilation system. To support the 20-metre diameter skylight, a unique structure comprising six ‘boomerang-shaped’ radially arranged, glue-laminated timber members was designed. The members are connected with steel tension rods, as well as concentric steel tension and compression rings – a solution that is economical in material use and maximizes daylight penetration.

Energy

The project’s  Energy Utilization Intensity (EUI) was reduced by high-performance in three main areas: building envelope; ventilation heat recovery; and building heating and cooling.  Building envelope options were optimized using energy modelling, and include a continuous layer of exterior insulation to achieve R-30 in walls. 

Combined with high-performance double-glazing and a strategic window-to-wall ratio, the building enclosure minimizes both heat loss, and cooling requirements due to solar heat gains.

Heating and cooling for the building is driven by a hybrid air/ground-source heat-recovery chiller plant.  This system can operate in either air-source mode (taking advantage of Victoria’s relatively temperate climate), or in ground-source (maintaining compressor efficiency, while using only a modestly-sized borehole field). Radiant ceiling panels provide heating and cooling to all office spaces, using moderate water temperatures and eliminating the need for fans to distribute space heating and cooling.

Ventilation

The larger east building uses underfloor air distribution and displacement ventilation. Dual core heat recovery technology reverses intake and exhaust pathways every 60 seconds, alternately charging large aluminum cores to achieve more than 80% effective heat recovery; much higher than conventional fixed-plate or wheel-type systems.

Variable speed AHU fans and automatic VAV dampers modulate the supply of dedicated ventilation air (no recirculation) in response to CO2 and humidity levels, maintaining indoor air quality and exhausting latent heat gains, while conserving energy for fans, heating, and dehumidification. All systems are controlled by a comprehensive digital Building Automation System.

PROJECT PERFORMANCE

  • Energy Intensity = 102 kWh/m²-yr
  • Thermal Energy Demand Intensity = 22.9 kWh/m²-yr
  • Energy Consumption Reduction vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 45%
  • Energy Cost Savings vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 33%

PROJECT CREDITS

  • Owner/Developer: Jawl Properties
  • Architect: D’Ambrosio Architecture + Urbanism
  • General Contractor / Construction Manager: Campbell Construction   
  • Energy Model: Integral Group
  • Structural Engineer: RJC Engineers
  • Building Envelope: RDH
  • Landscape Architect: Murdoch & de Greeff
  • Electrical Engineer:  AES
  • Mechanical Engineer  Integral Group
  • Structural Engineer:  RJC Engineers
  • LEED Consultant:  Integral Group
  • Photos: Sama Jim Canzian

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Viewpoint

University District, a new 80-hectare mixed-use neighbourhood in northwest Calgary, welcomed its first residents in 2018. The masterplan for the community was created by West Campus Development Trust (WCDT) through a public engagement process that set new standards of authenticity and transparency for projects of this type. The process helped WCDT to refine its plans, build trust with stakeholders and attract buyers.

Transparency Builds Trust

The traditional approach to redevelopment has been “design and defend,” where the developer finalizes a plan and then reveals it to the public. The trouble with design and defend is that it can spark resistance and resentment in neighbours and other stakeholders.

Rather than designing and defending, James Robertson, President &CEO for WCDT and his team   adopted a “transparency builds trust” approach.

Stakeholder Working Groups

The land that became University District is surrounded by five established neighbourhoods, the Foothills Medical Centre and it’s also home to the Alberta Children’s Hospital, the Ronald McDonald House and the University of Calgary. WCDT decided to establish relationships with all these stakeholders as early in the process as possible. WCDT recognized early on that you can’t just come into an area in the middle of established, well-loved communities and assume you can build whatever you want.

In redevelopment projects, the developer usually begins to meet the public as part of the land use re-designation application process. For University District, the public engagement project began well in advance of this stage, with a series of Stakeholder Working Groups. Each of these meetings, which functioned more like committees than open houses, focused on a single element of community design.

Each event included representatives from the surrounding communities and the main stakeholders, as well as the WCDT design team. This ongoing interaction was invaluable in building constructive relationships and helping to align the project goals with community needs. 

Each Stakeholder Working Group opened with a review of the decisions made at the last meeting. WCDT set clear deadlines for feedback so that stakeholders understood their responsibilities. When it came time for the City’s public hearing on the land-use re-designation, there was little or no opposition – an unusual situation in a city where redevelopment has often been the source of time-consuming conflict between developers and citizens.

Setting a Collaborative Tone

Next, WCDT held three open house meetings (the last of which was required by The City as part of the redevelopment application process). Breaking with tradition, each open house took place over two or three days, and in multiple locations to suit different stakeholder groups. Participants were offered different opportunities to participate, according to their individual preferences and schedules. WCDT considered it important to change the messaging from ‘the usual ‘Come to this open house to see what we’re doing,’ to ‘Come to this open house to see what we’re all doing.’

At the meetings, WCDT displayed large information boards, and participants placed Post-It Notes directly on these boards to indicate approval, concerns and/or disagreements. The WCDT team would then photograph the boards, compile all the feedback (positive and negative) and report it back to the participants and communities. These notes were also given to the WCDT design team to analyze and consider.

Recognizing that not everyone can attend meetings, and the opinions offered may not represent the views of everyone affected by the development, WCDT also posted an online survey, set up storefront information booths, and wrote letters directly to communities soliciting questions and comments.

This inclusive approach to engagement proved popular with the public. During the approvals process, all five surrounding communities submitted a letter to the City of Calgary expressing their support for the University District Plans – an unusual, perhaps unprecedented, expression of support.

This article, originally published by Smarter Growth, a program of the BUILD Calgary Region initiative, was adapted for SABMag by Maureen Henderson, Director of Marketing and Communications for the West Capus Development Trust.


SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.