SELKIRK REGIONAL HEALTH CENTRE

Design makes access to natural light and the outdoors fundamental to patient health

Like any city that is reaching a new level of livability, Selkirk, Manitoba has grown to need significant health services and facilities for local residents and those living in the region. The new two-storey, state-of-the-art, LEED Gold Selkirk Regional Health Centre (SRHC) is a 184,000 square foot regional healthcare hub,  offering everything from a birthing centre, dialysis,  surgery, cancer care, MRI diagnostics and outpatient programs, serving the Interlake region.

By James Orlikow

The Centre features an interior contemplation courtyard with a light sculpture, three accessible roof terraces; and a green roof that is overlooked from patient bedrooms. The landscape and building connect seamlessly through an active, south-facing, family/staff courtyard with a sun deck and outdoor ‘kitchen’.

With a focus on having as much natural light as possible in the building, glazed curtain walls are located in all public areas, starting at the front entrance and completely surrounding the contemplation courtyard as a ‘light well’ wayfinding feature.

The colours and finishes of the building echo the water, sky and earth of the Interlake region. Shades of aqua and warm terra cotta balance the golden buff Tyndall stone walls. The first and last impression at every threshold on the site.

Selkirk Regional Health Centre is a replacement facility required due to the premature obsolescence of the existing 1980s hospital. Accordingly, SRHC strives for durability, maintainability, and sustainability within a responsible economic framework. The site configuration, building placement, and orientation responds to the program needs; connectivity to the adjacent health campus; future pedestrian linkages; land drainage requirements; and the horizontal loop geothermal system.

Beyond the functional drivers, SHRC’s strategic planning and design aspirations were ‘access to natural light and outdoor spaces’ for all patients, families and staff.

The SRHC campus transforms 12 hectares of vacant commercial lands, of which more than six hectares  have been converted to naturalized parkland and another hectare to xeroscaped plazas and courtyards. In addition, the building has a 250m2 green roof. 

A network of passive stormwater management features such as dry stream beds, bioswales, and seasonal retention areas work in concert with carefully sited buildings, shelterbelts, and low-mow grassland areas. This forms the framework for all of the other opens spaces on site while managing 100% of the stormwater generated by the new development and creating optimum microclimates that extend public use of the grounds to all seasons.  The development re-establishes the pre-existing aspen forest, tall-grass prairie and wetland ecozones of the Interlake on site.

The constant volume air delivery systems comply with CSA Z317.2 ventilation standard for healthcare facilities. Fresh air rates outlined in the CSA standard ensures indoor air quality to enhance patient recovery and the wellness of occupants. Most regularly occupied spaces are located on the perimeter of the building allowing access to daylight and views.

PROJECT CREDITS

  • Owner/Developer  Interlake-Eastern Regional Health Authority
  • Prime Consultant  LM Architectural Group
  • General Contractor Ellis Don
  • Associate Architect  Stantec Architecture Ltd.
  • Landscape Architect  HTFC Planning & Design
  • Civil Engineer/LEED Advisor  MMM Group WSP
  • Electrical Engineer MCW / AGE Consultants Ltd
  • Mechanical Engineer  SMS Engineering Ltd.
  • Structural Engineer  Crosier, Kilgour & Partners Ltd.
  • Commissioning Agent  Demand Side Energy Consultants
  • Interior Design  Environmental Space Planning
  • Photos  Gerry Kopelow

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 361.9KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 54%
  • Water consumption from municipal sources = 1,487 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 43%
  • Recycled material content by value = 23.67%
  • Regional materials (800km radius) by value = 10.95%
  • Construction waste diverted from landfill = 63%

James Orlikow, FRAIC, Principal in Charge of the SRHC Project; Senior Advisor at LM Architectural Group, Winnipeg.

  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

ROB AND CHERYL MCEWEN GRADUATE STUDY & RESEARCH BUILDING

Solar chimney marks addition to Schulich School of Business, York University

Architecture and engineering are seamlessly integrated in the Rob and Cheryl McEwen graduate 6,166m²  academic research and classroom building to create a unique, climate responsive, hybrid environmental design  that promotes occupant wellbeing, while reducing energy use intensity to a level significantly below the model national reference standard.

By Barry Sampson

Environmental design strategies include:

  • Optimized building orientation and façade design for effective shading and solar harvesting;
  • A high-performance envelope with window-to-wall ratio carefully calibrated for effective daylighting and maximized insulation;
  • High-efficiency mechanical systems including activated concrete with radiant heating and cooling, high output metal cooling acoustic baffles and dedicated outside air displacement system.
  • A hybrid active/passive bioclimatic system featuring a climate responsive solar chimney that uses stack effect to drive effective building-wide natural ventilation, and contributes to passive pre-heating of the fresh air supply.
  • The project is targeting LEED Gold certification and is also equipped with the energy infrastructure required to achieve net zero energy in the future, pending the addition of onsite photovoltaic panels and geothermal boreholes. Together, the bustling atrium and the landmark solar chimney are physical manifestations of the school’s dual goals: to break down the physical and social barriers to creative thinking, while simultaneously putting into action the School’s commitment to sustainable design.

The unique form and architectural identity of the McEwen Building results from the synthesis of climate- adapted passive system design, program planning, and urban design responses to challenging site constrains.

Folded surfaces are used to transform the building footprint from alignment with the south-east orientation of the campus to optimal solar orientation of the building’s south facade for effective shading and solar energy harvesting, in particular optimizing the solar preheat mode of the solar chimney.  South- and west-facing glazing with Inline Fiberglass windows is shaded in summer by solar awnings and louvered shading devices.

The south-facing wind-sheltered courtyard creates an extension of the building’s social terrain and expands the existing system of interconnected courtyards of the original Schulich complex.

With interior social activities of the atrium visible through the exterior glazed wall and the chimney illuminated above as a landmark at night, these two strategic elements emphasize the social and environmental roles of the building to the campus at large.  Access by public transit is straightforward, facilitating the hosting of a variety of events and conferences. With York University subway station just a three-minute walk away, there was no requirement for additional on-site parking; instead, numerous bike parking rings were installed near the building entrances.

The 28-metre tall solar chimney, situated on top of the central atrium, drives the multi modal hybrid active/passive ventilation and environmental control system. The building automation system monitors the rooftop weather station and controls the switching between three ventilation modes: passive hybrid natural ventilation mode in shoulder seasons, active preheat mode in winter, and active cooling mode in summer.

In active modes, during the summer and winter when windows must be closed to save energy and control humidity, the building uses a Dedicated Outside Air System (programmed to save energy by meeting ventilation requirements only, rather than heating or cooling which are provided by the Klimatrol [Klimatrol (Rehau)- (905) 454-1742 and Artech (Lindner) (905) 454-1742] radiant system), and low-speed displacement ventilation. This delivers a building-wide 1.8 air changes per hour (ACH); however, this is a rare maximum supply since occupancy sensors ensure that ventilation air is delivered only where required.

PROJECT CREDITS

  • Owner/Developer  York University
  • Architect  Baird Sampson Neuert Architects
  • General Contractor  Ellis Don Construction
  • Landscape Architect  PLANT Architect Inc.
  • Civil Engineer  R.V. Anderson Associates Limited
  • Electrical/ Mechanical Engineer  Crosssey Engineering Ltd.
  • Structural Engineer  Blackwell Structural Engineers
  • Commissioning Agent JLL
  • Climate Consultants  Transsolar
  • Code Consultant  Leber Rubes Inc.
  • Building Envelope Consultants  RDH Building Science Inc.
  • Acoustical Consultants  Swallow Acoustic Consultants
  • Cost Consultants  Vermeulens Cost Consultants
  • Elevator Consultant  KJA Consultants Inc.
  • Photos  Steven Evans Photography & Cindy Nguyen

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 89.1 KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB = 74,2%
  • Water consumption from municipal sources = 2,170 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 47%
  • Recycled material content by value = 20.1%
  • Regional materials (800km radius) by value = 39,2%
  • Construction waste diverted from landfill = 88.5%
  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

THE ROTUNDA

High-performance office building rejuvenates downtown neighbourhood

Occupying a prominent downtown corner across from Victoria’s historic City Hall, this mixed-use commercial complex includes two levels of underground parking, a street level with landscaped boulevards and public plazas flanked by ground floor retail spaces. The six-storey, 10,362 m² west building and 13-storey, 16,299 m² east building house class-A office space above.

By Franc D’Ambrosio, Founding Principal, Erica Sangster, Principal, D’AMBROSIO architecture + urbanism and Andy Chong, Managing Principal, INTEGRAL GROUP.

Urban Design and Architecture

The developer’s aim was to contribute to the resurgence of Victoria’s downtown, provide much needed high-quality office space and set a design benchmark in the regeneration of a moribund city block. The building forms have been sculpted to define street edges and create public spaces that are welcoming, human scaled, and integrated with both the street fabric and the building activity.

The fundamental massing strategy was to divide the site laterally and thereby locate two separate and distinct buildings.  As a complex of two buildings, the project is in scale with the surrounding context. The separation has allowed for gracious public open spaces and also facilitated phased construction.  The two buildings share aspects of form and materials, but differ in their massing and façade composition. Both outwardly express their function, with slender office wings and primary circulation routes clearly articulated in concrete and glass.

The public focus of the project is the Rotunda, a 500m² sky-lit atrium that brings natural light into the centre of the west building and also functions as the return air plenum for the ventilation system. To support the 20-metre diameter skylight, a unique structure comprising six ‘boomerang-shaped’ radially arranged, glue-laminated timber members was designed. The members are connected with steel tension rods, as well as concentric steel tension and compression rings – a solution that is economical in material use and maximizes daylight penetration.

Energy

The project’s  Energy Utilization Intensity (EUI) was reduced by high-performance in three main areas: building envelope; ventilation heat recovery; and building heating and cooling.  Building envelope options were optimized using energy modelling, and include a continuous layer of exterior insulation to achieve R-30 in walls. 

Combined with high-performance double-glazing and a strategic window-to-wall ratio, the building enclosure minimizes both heat loss, and cooling requirements due to solar heat gains.

Heating and cooling for the building is driven by a hybrid air/ground-source heat-recovery chiller plant.  This system can operate in either air-source mode (taking advantage of Victoria’s relatively temperate climate), or in ground-source (maintaining compressor efficiency, while using only a modestly-sized borehole field). Radiant ceiling panels provide heating and cooling to all office spaces, using moderate water temperatures and eliminating the need for fans to distribute space heating and cooling.

Ventilation

The larger east building uses underfloor air distribution and displacement ventilation. Dual core heat recovery technology reverses intake and exhaust pathways every 60 seconds, alternately charging large aluminum cores to achieve more than 80% effective heat recovery; much higher than conventional fixed-plate or wheel-type systems.

Variable speed AHU fans and automatic VAV dampers modulate the supply of dedicated ventilation air (no recirculation) in response to CO2 and humidity levels, maintaining indoor air quality and exhausting latent heat gains, while conserving energy for fans, heating, and dehumidification. All systems are controlled by a comprehensive digital Building Automation System.

PROJECT PERFORMANCE

  • Energy Intensity = 102 kWh/m²-yr
  • Thermal Energy Demand Intensity = 22.9 kWh/m²-yr
  • Energy Consumption Reduction vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 45%
  • Energy Cost Savings vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 33%

PROJECT CREDITS

  • Owner/Developer: Jawl Properties
  • Architect: D’Ambrosio Architecture + Urbanism
  • General Contractor / Construction Manager: Campbell Construction   
  • Energy Model: Integral Group
  • Structural Engineer: RJC Engineers
  • Building Envelope: RDH
  • Landscape Architect: Murdoch & de Greeff
  • Electrical Engineer:  AES
  • Mechanical Engineer  Integral Group
  • Structural Engineer:  RJC Engineers
  • LEED Consultant:  Integral Group
  • Photos: Sama Jim Canzian

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

UBC AQUATIC CENTRE

Advanced sustainable design strategies improve performance in this challenging building type

Completed In 2017, this 8000m² hybrid competition and community aquatic facility replaces an aging indoor and outdoor pool complex, no longer capable of meeting the University of British Columbia’s changing needs. The challenge was to create a facility that would balance the high-performance training requirements of the university successful competitive swim program, with the increased demand for lessons and leisure opportunities from the rapidly expanding residential communities on campus.

By Jim Taggart

The Aquatic Centre is divided north south into four linear program ‘bars’ – lobby and change rooms, community aquatics, competition aquatics, and bleachers. Daylight is used to differentiate between the two aquatic halls. A line of Y-shaped columns supports a continuous six-metre wide skylight that bisects the aquatic hall, delineating competition and leisure areas. A translucent screen creates a luminescent barrier between the two principal spaces, making it possible to control the uses, and have two different activities or events taking place simultaneously.

The architectural composition consists of three distinct elements: a tessellated standing seam metal roof that hovers over an inclined black concrete base, and is separated from it by a continuous ribbon of fritted glazing. The roof rises and falls according to the functional requirements of the spaces below, its slopes and projections providing rain protection, solar shading, and control of daylight penetration as required. The building has become an integral part of the university’s new student hub, adjacent to the bus loop and a few steps from the new student union building.

As a building type, aquatic centres present some major challenges from the sustainability perspective, including water conservation, air quality, energy optimization, light control and acoustic performance.

Water Conservation

Of these, water conservation is the most significant, standard practice being that pools are emptied and the water discarded every time the pool requires maintenance. For the project team, not only did this seem an outdated practice from an environmental point of view, it also seemed incompatible with UBC’s reputation as a leading proponent of sustainable design.

In fact, water conservation has been an important consideration for the UBC Properties Trust for two decades, with new buildings now required to reduce water consumption by 30% relative to the reference standard. This is part of an overall requirement that all new projects are built to LEED Gold standard.

With the university currently conducting research on regenerative neighbourhoods, the project team began looking for ways in which the building could contribute positively to the infrastructure requirements of the community as a whole.

The answer was to create an underground cistern that could not only collect all the pool water during maintenance, but also supply the fire department should the need arise, or accommodate storm surge water for the north campus precinct, so relieving pressure on the existing storm sewer system.

The cistern, which has a capacity of 900,000 litres, is divided into three compartments according to the amount of filtration required prior to reuse. Another of its functions is to collect rainwater from the roof and the adjacent transit plaza, reusing it for toilet flushing, irrigation and poll top up.

  • PROJECT CREDITS
  • Client  UBC Properties Trust
  • Architects  JMA & Acton Ostry Architects
  • Photos  Shai Gil; Ema Peter

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

Valleyview town hall

New municipal building aims for Passive House Plus

By Oscar Flechas

The new Valleyview Town Hall is an 800 m² two-storey plus basement building located in Valleyview, 350Km north of Edmonton in the heart of Alberta’s oil country. Despite the large seasonal fluctuations in temperature and sunlight levels at this latitude, Valleyview Town Hall is aiming to be the first Passive House certified commercial building in Alberta and the first Passive House Plus in North America. This means that on-site renewables meet 100% of the building’s energy demand on an annual basis, a giant leap forward for a town with fewer than 2,000 residents.

The building reuses the footprint of a previous structure, minimizing site disturbance, preserving adjacent community park space and capitalizing on solar orientation. With the latter being a vital strategy in this extreme climate, the program is organized with high-traffic working areas towards the long, naturally-lit south side to ensure energy balancing. In the warmer months, heat gains are controlled with fixed shades that cut out the high angle sun.

In addition to its aggressive energy targets, the Passive House Standard requires excellent indoor air quality through carefully calibrated mechanical ventilation and air recirculation systems. To maintain steady temperatures over all three levels of the building, ventilation specifications included a mix of outdoor variable refrigerant flow (VRF) system for cooling and heating, and a high-efficiency energy recovery ventilator.

To further enhance indoor environmental quality, all interior finishes, paints, adhesives, flooring and composite wood products are specified to contain low amounts of volatile organic compounds (VOCs) and be free of other toxins. Beyond the physiological health of its employees, however, the municipality is also concerned for their psychological wellbeing. Accordingly, all workspaces and other frequently used areas are adjacent to operable windows that connect visually to the park, while a balcony and designated outdoor sitting area ensure that the connection with nature is not only visual but also physical.

Another Passive House requirement is for durability of materials and assemblies. The materials chosen, including glass fibre reinforced concrete (GRC), and high pressure laminate siding and metal siding which are both resilient and long lasting. The highly energy efficient envelope includes Passive House certified windows within  a rainscreen system that promotes drying of any moisture that gets behind the cladding. Together with the airtight and vapour open construction this ensures there is no unwanted condensation within the wall assembly and extends the life of the envelope components.

In anticipation of changing needs over the life of the building, an area for future physical expansion is included within the existing Passive House envelope. Accommodating future expansion and reconfiguration meant that the size and spacing of the windows had to be carefully considered to accommodate potential changes to the functional layout.

PROJECT CREDITS

  • Owner/Developer  Town of Valleyview
  • Architect  Flechas Architecture Inc.
  • Indicative Design  Kobayashi + Zedda Architects Ltd., ReNu Building Science and Williams Engineering
  • General Contractor  Scott Builders Inc.
  • Landscape Architect  Kinnikinnick Studio Inc.
  • Civil Engineer  HELiX Engineering Ltd.
  • Electrical/Mechanical Engineer  Integral Group
  • Structural Engineer  Laviolette Engineering Ltd.
  • Commissioning Agent  Bair Balancing
  • Energy Modelling  Marken Design+Consult
  • Photos  Flechas Architecture Inc.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

  • The highly energy efficient envelope uses Euroline 4700 Series THERMOPLUS™ PHC Tilt & Turn windows in a rainscreen system that allows drying of any moisture that gets behind the cladding. Tech-Crete CFI® pre-finished exterior insulating wall panels are used on the foundation.
  • The building reuses the footprint of a previous structure, minimizing site disturbance, preserving adjacent community park space and capitalizing on solar orientation. The foundation of Quad-Lock® Insulated Concrete Forms was supplied by Airfoam Insulation products which offers Insulation Boards, Insulated Metal Panels, Geofoam and Void-Fill for wall, roof and below-grade applications. www.airfoam.com
  • The hallway leading to workspaces which have operable windows that connect visually to the park. The project uses a Tempeff North America ERV system with Dual-Core technology to recover both heat and humidity in winter for continuous fresh air supply and a frost-free operation in extremely cold conditions.
  • All interior finishes, paints, adhesives, flooring and composite wood products are specified to contain low amounts of volatile organic compounds. To maintain steady temperatures over all three levels of the building, ventilation specifications included an outdoor variable refrigerant flow (VRF) system by Mitsubishi Electric Heating & Cooling for cooling and heating, and a high-efficiency energy recovery ventilator.
  • Ōko skin extruded concrete slats by Rieder are made up of glassfibre reinforced concrete, 100% non-combustible, available in a range of colours, requires no maintenance and individual elements can be replaced easily.

Living Libations headquarters

Passive House in the realms of human wellbeing and ecological responsibility

By Jim Taggart

Set on a south-facing slope amid the forested hills of Haliburton, Ontario, the design of the new Living Libations Headquarters reflects a corporate philosophy that places the highest value on nature, beauty and being. In building terms, this philosophy naturally led to the choice of a highly durable, low-energy form of construction, with a strong emphasis on indoor environmental quality and attractive common spaces that would have the minimum environmental impact over an extended life cycle. These criteria led in turn to the choice of a Passive House structure.

A manufacturer of organic beauty care products, Living Libations has a staff of 50 who, on completion of this project, now work in a production laboratory building with an exposed heavy timber structure and natural finishes that create a warm and welcoming atmosphere. The interior hardwood plywood finish is  bonded with a food-grade soy-based adhesive, rather than urea formaldehyde (UF), which  does not emit toxic air contaminants.

The other program spaces include (on the uppermost floor), a professional kitchen, a south-facing dining room that opens onto a 450m² outdoor terrace, a yoga room with adjoining meditation, and a light therapy solarium which opens onto a large rooftop terrace that has a panoramic view of the surrounding forest and beautiful sunsets.

The design approach was to let the geography of the site shape and locate all built form in order to minimize the ecological impact on the site. Compasses and a solar pathfinder were used to ensure the building was oriented for maximum cold season solar heat gains. The steep south-facing slope made it possible to capture solar heat by locating the majority of windows on the south side while the concrete construction of the ground floor, earth-sheltered by the slope, created a thermal flywheel to modulate diurnal temperature fluctuations.

In combination with an unbroken R50 thermal separation, this strategy perfectly offsets peak heating and cooling demand. Wall and roof system designs were modelled for possible interior dew points in “U-WERT” software that proved the benefit of using a smart air-vapour control layer inside the building. “THERM” software was used to guide the design of thermally efficient structural connections.

The design team optimized the building layout, equipment selection, and operation schedule to minimize energy demand. Six air-to-air heat-pumps easily maintain comfortable conditions through -30C winter nights and +30C summer days. Evacuated solar tubes on the roof provide domestic hot water in the spring, summer, and fall, and even pre-warmed water in winter months. A propane back-up boiler system for make-up heat was required by the authority having jurisdiction, but to date it has not been needed.

Jim Taggart, FRAIC is the editor of SABMag.

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 59.7kwhr/m²/year
  • Water consumption from municipal sources = 0 litres/occupant/year
  • Recycled material content by value = 5%
  • Regional materials (800km radius) by value = 54%
  • Construction waste diverted from landfill = 20%
  •  

PRJECT CREDITS

  • OWNER/DEVELOPER: Nadine & Ron Artemis / Living Libations
  • BUILDING DESIGN: G West Building Services in
  • collaboration with Steenhof Building Services Group & CHORNY Associates Architect Inc.
  • PROJECT MANAGEMENT: G West Building Services
  • CONSTRUCTION CONTRACTOR: CDH Carpentry in
  • collaboration with many other trades.
  • LANDSCAPE: Kevin Forbes
  • CIVIL ENGINEER: Greenview Environmental
  • ELECTRICAL AND STRUCTURAL ENGINEER: Steenhof Building Services Group
  • MECHANICAL ENGINEER: Brumar Engineering Services Ltd.
  • PASSIVE HOUSE DESIGN CONSULTANT: Peel Passive House Consulting
  • INTERIOR DESIGN & FURNISHINGS:  Nadine Artemis & Jamie Lee Mason
  • PHOTOS: Greg West., John Lehmann Photography 

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

  • Innovative and customizable Boxx panels from Element5 efficiently span long distances between supporting structural members and are well suited for floor and roof applications in multi-storey buildings. The interior hardwood plywood finish is bonded with a food-grade soy-based adhesive, rather than urea formaldehyde, which does not emit toxic air contaminants.
  • Six Tempeff North America RGSP Series Dual-Core energy recovery ventilators recover both heat and humidity in winter allowing for continuous fresh air supply and a frost-free operation in extremely cold conditions without need for preheat or defrost.
  • Six Air-to-Air heat pumps by Mitsubishi Electric Heating & Cooling, which can work efficiently below -25C°, provide cooling and heating.
  • The Katana™ by Moso® bamboo decking is a sustainable, long lasting, class A fire rated natural alternative to other decking products, and very stable in all weather conditions.
  • Aluminum railing profiles by Dekrail are designed for both optimal strength and visual aesthetics.
  • Steenhof Building Services Group was proud to be the prime consultants for all disciplines of Engineering including Mechanical, Electrical & Architectural (Chorny Associates Architects Inc.)
  • All 75 high-performance windows were supplied by ENERsign. 

Bank of Canada Renewal, Ottawa, ON

Existing Building Upgrade Award | Perkins+Will

Jury comments: This major rehabilitation and revitalization project, driven by quantitative issues of obsolete infrastructure, poor energy performance and related carbon impacts, and an outdated working environment, has been addressed with aesthetic sensitivity and restraint. Innovative structural upgrades enabled the restoration of the integrity of this 1970s office tower by Arthur Erickson,  while the 1930s centre building and its immediate surroundings  have been transformed into valuable new public amenities.

Located just west of Parliament Hill in Downtown Ottawa, the Bank of Canada Head Office complex comprises 79,500m² of offices and operation spaces. The original Centre Building was built in the 1930s; the twin office towers and connecting atrium being added in the 1970s. Completed in 2017, this project included the comprehensive renewal of the existing complex, including some reconfigurations and additions to the program.

A new museum invites and educates the community about the Bank’s role in the Canadian economy. The pyramidal glass entrance pavilion and the enhanced public realm that surrounds it form an abstraction of the Canadian landscape and functions as an accessible, multi-faceted public realm throughout the year.

Major drivers for renewal were the performance and infrastructure deficits of the facility, energy upgrades and carbon reductions, and modernization of the workplace. Within the towers, floor plates and waffle slab ceilings were restored to their original open plan concept.

The renovated towers were designed to be modular, allowing for a diverse range of uses so that each contains a combination of private and collaborative spaces.

The Centre Building accommodates both offices and conference facilities, while the atrium provides a variety of social spaces.

The design looked to maintain as much of the existing building infrastructure as possible, to lower both costs and negative environmental impact. Passive design strategies include revealing floorplates, allowing for deeper daylight penetration and greater access to views to the exterior and atrium.

PROJECT CREDITS

  • Client:  Bank of Canada
  • Architecture/Interior Team: Perkins + Will
  • Civil Engineer: Novatech Engineering Consultants
  • Electrical/Mechanical Engineer: BPA Engineering Consultants
  • Structural Engineer:  Adjeleian Allen Rubeli Limited
  • Project Manager:  CBRE Limited/Project Management Canada
  • General Contractor:  PCL Constructors Canada Inc.
  • Landscape Architect:  DTAH
  • Food Service/Commissioning Agent:  WSP
  • Heritage ConsultantEvoq Architecture
  • Building Envelope:  ZEC Consulting
  • Building ScienceCLEB
  • Sustainability Consulting Team:  Perkins + Will
  • Security:  LEA
  • A/V:  Engineering Harmonics
  • Acoustic:  HGC
  • Cost Consultant:  Turner & Townsend
  • Lighting:  Gabriel MacKinnon/Perkins + Will
  • Code & Life Safety:  Morrison Hershfield
  • Photos:  Younes Bounhar

PROJECT PERFORMANCE

  • Energy intensity = 183 kWh/m² /year
  • Energy savings relative to reference building = 44%
  • Water consumption = 4,645L/occupant/year (based on 250 days operation)
  • Water savings relative to reference building = 35%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Okanagan College Trades Renewal and Expansion Project – Kelowna, BC

Institutional [Large] Award  |  Diamond Schmitt Architects  

The primary objective of the Okanagan College Trades Renewal and Expansion project was to enlarge and unify disparate elements of the Trades training program on the Kelowna, BC campus and to provide an exemplar of highly sustainable building design for students and future generations of trades workers.

The project comprises two distinct but integrated components: the renovation of 4,180 m² of existing trades workshops and the construction of a 5,574 m² addition. The three-storey addition frames a new courtyard, preserves a mature copper beech tree and positions the Trades Complex much closer to the main road, creating a new public face for the college.

The new building accommodates classrooms, group offices, labs, trade shops, a café, as well as student social and study space for the campus as a whole. The ambitious sustainable design targets were a driving force for the project. They include achieving Living Building Challenge petal certification including Net Zero Energy, LEED Platinum for the new addition, and LEED Gold for Existing Buildings Certification (LEED EB:O&M) for the renovation.

The application of bioclimatic design principles was critical to achieving the ambitious energy targets. These principles informed the orientation, footprint and massing of the building and maximized the potential for capturing solar energy and minimizing the need for conventional mechanical and electrical systems.

PROJECT PERFORMANCE

  • Energy intensity (base building) = 17.7KWhr/m²/year
  • Energy intensity (process) = 19.3KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB = 51%
  • Water consumption from municipal sources = 2,935litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 35%
  • Recycled material content by value = 25%
  • Regional materials (800km radius) by value = 32%
  • Construction waste diverted from landfill = 81%

PROJECT CREDITS

  • Client  Okanagan College
  • Architect  Diamond Schmitt Architects
  • Associate Architect  David Nairne + Associates
  • Civil Engineer  True Consulting
  • Electrical Engineer  Applied Engineering Solutions
  • Mechanical Engineer  AME Group
  • Structural Engineer  Fast+Epp
  • Commissioning Agent  I Design
  • Sustainability  Integral Group
  • Envelope Consultants  RJC Engineers
  • General Contractor  PCL Constructors Westcoast Inc
  • Landscape Architect  Phillips Farevaag Smallenberg
  • Building Code  LMDG Consultants
  • Cost Consultant  Quantity Surveyors Ltd.
  • Photos  Ed White Photographics

Exterior sunshades were provided by McGill Architectural Products.

The south main entry. Steel cladding 7/8-in. corrugated profile supplied by Vicwest.

The central three-storey atrium brings daylight into the core and assists with natural ventilation. Alumicor supplied the operable windows 5000 Series Phantom Vents, 2300 Series skylights, and 2600 Series curtain walls.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Building Blocks on Balmoral at Great West Life – Winnipeg, MB

Institutional [Small] Award | Prairie Architects Inc.

Jury comments: This project comprehensively and creatively addresses multiple aspects of sustainability simultaneously. The adaptive re-use of a heritage house as the centrepiece of a new and much needed daycare facility not only achieves LEED Platinum environmental performance, but also acts as a powerful catalyst in the revitalization of the fabric of Winnipeg’s West Broadway neighbourhood through the addition of this community amenity.

Building Blocks on Balmoral at Great-West Life comprises  the adaptive re-use of the 110-year old Grade II listed Milner House and two new structures, which together provide 100 licensed childcare spots to Great-West Life employees and the West Broadway community.

In addition to upgrading and extending the useful life of a heritage structure, the new facility has achieved LEED Platinum certification with the integration of sustainable features that include: a geothermal ground source heat-pump with in-floor radiant heating and chilled beams for cooling; displacement ventilation that requires lower fan power than ducted systems; significant use of salvaged, refurbished and re-used materials; substantial water use reduction (a particular priority in the Prairies); abundant daylight and views and use of low-emitting materials.

In order to create a sense of “home” for children, the facility was deliberately divided into two smaller additions on either side of the existing Milner House: one for toddlers and infants and one for preschool aged children. Each addition has direct connection to accessible exterior play yards, designed with naturalized landscapes and an age-appropriate focus.

The need to replace the deteriorating foundation of the Milner House provided an opportunity to make the ground floor of the facility fully accessible.

In order to keep the entire main floor on one level without introducing ramps and stairs, the original structure was lowered approximately 610mm onto a new foundation, and the north end of the site was built up 1,220mm to provide an accessible outdoor play area  for the children.

This also enabled the implementation of two site planning moves that facilitate on-site stormwater management: the elimination of an impervious lane connecting Balmoral Street to the Great- West Life parking lot; and the creation of a retention area for stormwater run-off at the north end of the site.

With a particular concern for indoor environmental quality, the project has been designed with 100% fresh air displacement ventilation. The system, which introduces low velocity fresh air at low level, was selected not only because of the significant energy savings it offered, but also because it was the most effective way to deliver fresh air close to the floor in spaces occupied by small children and crawling infants.

PROJECT CREDITS

  • Owner/Developer:  Great West Life Assurance Company
  • Architect:  Prairie Architects Inc.
  • General Contractor:  Manshield Construction
  • Landscape Architect:  Nadi Design & Development Inc.
  • Civil Engineer:  WSP
  • Electrical/ Mechanical Engineer:  KGS Group 
  • Structural Engineer:  Wolfrom Engineering Ltd.
  • Commissioning Agent:  Pinchin
  • Energy Modelling:  Stantec
  • Photos: Lindsay Reid

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) =  145.5KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 56%
  • Water consumption from municipal sources = 2,993 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 50%
  • Recycled material content by value = 14%
  • Regional materials (800km radius) by value = 36%
  • Construction waste diverted from landfill = 89.5%
  • The chilled beam around the perimeter. Daikin contributed fan coils and its Enfinity water-source heat pumps to the HVAC system. Each of the four new buildings use an Uponor manifold and in-floor radiant system to provide  even heating across the floors. 
  • The project uses an ERV system by Winnipeg-based Tempeff North America. The Dual-Core technology recovers both heat and humidity in winter allowing for continuous fresh air supply and a frost-free operation in extremely cold conditions. This ERV simplifies system design and does not require preheat or any form of defrost strategy.
  • East-facing childcare space where large windows admit natural light. DUXTON Windows & Doors supplied the fiberglass fenestration, in FiberWall™ Series 328 and 458, high performance triple glazing. The windows came complete with a 350 Panning exterior extension, providing a seamless, prefinished flashing detail for easy installation.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Sustainable Energy and Engineering Building

Insulated precast concrete façade contributes to energy savings in landmark building

Simon Fraser University’s new, five-storey Sustainable Energy and Engineering Building (SE3P) in Surrey, BC represents the University’s first major step in expanding beyond its Central City campus to become a distinct academic precinct within Surrey’s growing and revitalized City Centre neighbourhood.

By: Venelin Kokalov

Funded in part by the Federal Government’s Post-Secondary Institutions Strategic Investment Fund (SIF), this distinctive 16,000 square metre (173,000 square feet, excluding single-level underground parkade) facility is purpose-built to house the new Sustainable Energy and Engineering (SEE) program which offers an integrated, multi-disciplinary approach to energy engineering education to support the clean tech, renewable and sustainable energy sector.

With a building program organized around a light-filled central atrium and sweeping staircase punctuated with trees at varying levels, SE3P comprises teaching and research labs; collaboration and study spaces; faculty, graduate and administrative offices; recreational rooms; undergraduate and graduate lounges, student services, and plant maintenance facilities. When fully operational, approximately 515 students and 60 faculty and staff will use the building. Its 400-seat lecture hall, situated on the southwestern portion of the ground floor, will serve the full SFU Surrey campus as well as the broader Surrey community.

The project’s fast-track delivery method necessitated a significant overlap in the design and construction phases. Utilizing prefabricated precast concrete elements for the façade became a key consideration, not only for ensuring long-term durability and reduced maintenance, but because it also enabled the building to be closed in quickly to meet the tight construction schedule.

As a result, SE3P’s compelling architectural expression is a unique façade composed primarily of framed alternating strips of energy-efficient, undulating precast concrete double wythe insulated panels and reflective glazing. Drawing inspiration from the geometric pattern of electrical circuit boards, the precast concrete panels also symbolize the technological subject matter that will be taught within the building.

By fabricating the exterior finish, thermal and moisture protection, and interior finish off-site as a single pre-assembled system, the project’s schedule, performance and energy-saving goals were maintained while mitigating on-site construction noise and debris. The heavier precast concrete elements with reflective glazing help to animate the façade and are juxtaposed with the transparent glazing at the building’s ground plane which extends the outdoor public realm into the interior public space, engaging the local community.

Venelin Kokalov is Design Principal at Revery Architecture Inc.

PROJECT CREDITS

  • Owner Simon Fraser University (SFU)
  • Architect  Revery Architecture Inc.
  • Structural Engineer  WSP
  • Mechanical Engineer  The AME Consulting Group Ltd. (AME Group)
  • Electrical Engineer  AES Engineering Ltd. (AES)
  • Building envelope  Morrison Hershfield Ltd.
  • Precast Concrete Engineer  Kassian Dyck & Associates
  • Contractor  Bird Construction
  • Precast Concrete Supplier and Installation SureClad a subsidiary of Surespan Structures, a member of the Surespan Group
  • Photos  Courtesy of Revery Architecture. Construction photos by Surespan Construction Ltd.

Variable air volume (VAV) units, diffusers, registers and grilles were provided by E.H. Price (Price Industries). Other HVAC equipment, namely split air conditioning units, fan coil units, and chillers were provided by Daikin.

The building uses CES light sensors, manufactured by PLC Multipoint, Inc. of Everett, Washington.  The sensors measure the amount of daylight in each space so that the building’s Energy Management System can minimize the use of artificial lighting, saving energy and money while creating optimal work environments. 

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.