Dedicated to sustainable,
high performance building

CAGBC launches Zero Carbon Building Micro-Credential

New micro-credential helps build proficiency in low-carbon concepts and applying the Zero Carbon Building Standards.

The Canada Green Building Council (CAGBC) recently launched its Zero Carbon Building Essentials Micro-Credential, a new leaning path designed to help green building professionals develop the knowledge neede d to advance carbon reductions.

“The growing demand for low-carbon building solutions requires building professionals to acquire and integrate new skills and knowledge now,” says Thomas Mueller, CAGBC President and CEO. “Drawing on 20 years’ experience delivering high-quality green building training and the expertise we gained from our Zero Carbon Building program, CAGBC’s new micro-credential will provide the key concepts and insights that Canada’s building professionals need to advance decarbonization today.”

The ZCB Micro-Credential was developed to support Canada’s building sector and meet growing demand for low-carbon buildings and retrofits. With only five years left to meet 2030 carbon reduction targets and another 25 years to achieve decarbonization, Canada’s building sector needs to act now to be prepared for the low-carbon future.

The ZCB-Essentials Micro-Credential builds on insights gained from creating and implementing the Zero Carbon Building Standards, Canada’s first and only building standards focused solely on carbon reductions. Now with over a hundred certified buildings and hundreds more registered, CAGBC has created a micro-credential for building industry professionals seeking to better understand zero-carbon concepts.

“Zero-carbon buildings and retrofits require specific skills and knowledge,” said Mark Hutchinson, CAGBC’s vice president of Green Building Programs and Innovation. “Project teams need to be more integrated and collaborative, using common terminology and approaches that everyone involved can understand, from design through to construction and building operations.”

ZCB-Essentials will focus on low carbon fundamentals and help establish an industry-wide lexicon. The micro-credential starts with the live and interactive “Introduction to the Zero Carbon Building Standards” webinar. Five on-demand courses explore key topics including making the business case for zero carbon, Thermal Energy Demand Intensity, the Zero Carbon Balance, Embodied Carbon and transition planning. To complete the micro-credential, a new interactive workshop will provide a practical look at the latest ZCB Standards. 

Participants that complete the micro-credential will receive a ZCB-Essentials badge through Credly, a global Open Badge management platform. With Credly, participants can secure and share their ZCB-Essentials badge, demonstrating their knowledge of zero-carbon principles to clients and employers.

“Launching a micro-credential for the Zero Carbon Building program is one of the many ways CAGBC continues to advance decarbonization in the Canadian real estate market,” said Mueller. “Along with projects to support transition planning, our Learning program is helping prepare the building sector workforce for Canada’s low-carbon future.”

To learn more about the micro-credential, visit cagbc.org/learn.

Mechanical systems for low energy buildings

By Stuart Hood, Principal, Introba 

When it comes to energy use in buildings, it may seem counterintuitive to say that big savings can cost less than small savings – but this is true if you consider the entire building as a single integrated system. Amory Lovins, co-founder of the green energy non-profit Rocky Mountain Institute, has written extensively on the diminishing returns that are realized when an incremental approach is taken to improving the energy efficiency of traditional building systems; and how the whole building approach to energy conservation can ‘tunnel through the cost barrier’. 

A Whole Building Approach

Whether the demand is for heating or cooling, a whole building approach shifts the emphasis from a reliance on high-capacity active systems to the predictable (and much reduced) energy demand inherent in the stable thermal mass of a building with a high-performance envelope. This translates into an enclosure with a greater thickness of thermal insulation, increased airtightness, structural thermal breaks at balconies and other structural penetrations together with careful detailing of cladding systems, doors and windows, and the minimum number of penetrations of ducts and pipes through the building enclosure. 

In addition, adequate solar shading is required on south, west, and east elevations to control heat gain. The shading should be externally mounted with adequate depth if fixed or using manually operable blinds with easily accessible controls through opening tilt and turn windows.

Improving Energy Performance

This whole building approach is the fundamental premise of Passive House design which, rather than using design models to calculate the percentage improvement in energy performance of a building relative to MNECB or ASHRAE standards, sets absolute energy performance targets that must be verified by detailed calculation and air tightness testing during construction, and on completion.

The required maximum thermal energy demand intensity (TEDI) of 15kWh/m2/year for heating and cooling in Passive House buildings is not an arbitrary figure, but rather the threshold at which traditional mechanical systems with perimeter radiators or fan coils are no longer required. With this level of energy demand,  heating and cooling can be delivered through the ventilation system dramatically reducing the size and cost of the mechanical equipment required. At these levels of passive building performance, relatively small electrically powered heat pumps can deliver the much reduced heating and cooling energy required, eliminating the need for high capacity fossil fuel systems.

This has been the approach used in some of the first generation of Passive House buildings completed in Canada over the past 10 years.  The additional upfront cost for the high performance building enclosure described above is more than compensated for by the much lower capital cost of mechanical equipment, and the reduced operating and maintenance costs experienced over the service life of the building.

Building Resilience

However, the prolonged higher temperatures we are experiencing in the summer months (even in traditionally mild climates such as southwest British Columbia) has now made active cooling using heat pumps an imperative in new construction. These heat pumps can be used in tandem with heat recovery (or energy recovery) ventilation systems, to pre-condition incoming ventilation air.  These requirements can be addressed in the design of buildings of different types and scales, but may be implemented in different ways according to building use, occupant density, the nature of ownership  and the building management protocols.

Equipment

Much of the thermal energy required to heat a Passive House or other low energy building comes from the sun but also body heat, lights and appliances, like TV’s and refrigerators. Indoor air quality, including temperature and humidity control and the removal of contaminants is achieved using heat recovery or energy recovery ventilators (HRVs and ERVs).

• An HRV is a ventilation device that helps make buildings healthier, cleaner, and more comfortable by continuously replacing stale indoor air with fresh, filtered  outdoor air. Passive House requires HRVs to be at least 75% efficient, but models with significantly greater efficiency are commonly available. An 85% efficient HRV, exhausting air at 20oC, will provide incoming air at 16oC, when it is -10oC outside.

• An ERV is similar to an HRV but can exchange both heat and moisture. An ERV can provide control over moisture levels in a building during both cold and warm, humid weather. It exchanges moisture between the outgoing and incoming air providing humidification in winter and dehumidification in summer, both of which are beneficial to human comfort, health and energy consumption.

• A heat pump uses electricity to provide both heating and cooling to a building. These appliances are efficient at transferring heat from one place to another, depending on where it’s needed.

In the winter, a heat pump provides heating by extracting heat from outside a building using either the air or the ground as a heat source and moving it inside. In summer, it operates in reverse, to cool the air entering the building.

Stuart Hood is Principal at Introba. Vienna House text written in consultation with Public Architecture + Communication.

Centralized HVAC systems, such as that supplied by Oxygen 8, provides ventilation from a single large ERV, making routine maintenance, including the replacement of filters, much more straight forward. It also reduces the penetrations through the building enclosure, and the length of cold ductwork inside the building envelope that must be highly insulated to mitigate heat loss.

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

The drive to decarbonization


The Role of Prefabricated Precast Concrete

By Brian J. Hall and Val Sylaj

Prefabrication, an innovative production method, stands out with its unique features that have the potential to yield significant greenhouse gas (GHG) emission reductions while meeting current and future construction needs. The fundamental differences between factory prefabrication and conventional site construction offer a reduced carbon footprint, and so a promising path towards a more sustainable future.

With traditional construction, the different building materials are delivered from production facilities to the site where the building is constructed from the ground up. In prefabricated construction, building components are fabricated at an off-site facility and installed at the construction site. Moreover, using prefabricated precast concrete products significantly reduces the waste and energy usage typically associated with construction.

This shift from the building assembly stage to the product manufacturing stage not only minimizes the environmental impact but also supports  a more sustainable approach to construction. The benefits of prefabrication are already being seen, and there is potential for further carbon reduction going forward 

Our Progress to Date

Since the publication of our first CPCI industry-average Environmental Product Declarations (EPDs) in 2015, the Canadian precast concrete industry has made significant strides, achieving a remarkable 22% reduction in our A1-A3 (Product Stage) embodied carbon (Figure 1). This reduction underscores our unwavering commitment to sustainability and the potential of prefabricated precast concrete to play a significant part in the decarbonization of the construction industry.

In 2015, ASTM published the first industry average Type III (EPD) for the Canadian precast concrete industry, a significant milestone within the wider construction industry. Since then, the Canadian precast concrete EPDs have been updated twice (in 2019 and 2023) reflecting the more comprehensive emissions data that is now available.

The latest EPDs from 2023 introduced a more detailed regional emissions breakdown than just a national average. Four product categories were reported: architectural precast products, insulated wall panels, structural precast products, and underground precast products.

However, the Architecture, Engineering and Construction (AEC) community must understand the limitations of EPDs and the differences between EPDs and whole life, whole-building life cycle assessment (wbLCA). Most people focus on just the Global Warming Potential (GWP) reported in the EPDs, but what does this number mean? Can you compare two different building materials’ EPDs and make your choice based solely on the lowest GWP?

EPDs are intended to be used as reference input data for consultants conducting a wbLCA, which includes all the life cycle stages identified in European Standard EN 15804, the most popular global standard for producing EPDs for construction products.

For a full ‘Cradle to Cradle’ life cycle assessment, the stages are (Figure 2):

  • Modules A1-A3 Product Stage
  • Modules A4, A5 Construction Stage
  • Modules B1–B7 Use Stage
  • Modules C1–C4 End of Life Stage
  • Module D Net Benefits and Loads   

Brian J Hall, B. B. A., MBA, FCPCI, MRAIC. Managing Director, Canadian Precast/Prestressed Concrete Institute.

Val Sylaj, P.Eng., Ph.D.  President/Director of Technical Services, Canadian Precast/Prestressed Concrete Institute.

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Building Better with Steel

Guidelines for lowering GHG emissions in conventional steel structures

By Scott Norris

Finding ways to reduce the carbon footprint of buildings is on every professional’s mind. While certification programs like LEED, Toronto Green Building Standards, and CAGBC Net Zero Carbon Building Standard have helped guide the industry in terms of reducing the environmental impact of buildings, including Global Warming Potential (GWP), it is an ever evolving mission.

The steel industry has begun to take a life cycle approach, reducing the emissions associated with the production of the material, the construction process, as well as the energy efficiency over its lifespan. Regardless of the building type, occupancy, or design material, it is critical that consultants reaffirm their design approaches to ensure they align with this more holistic goal.

In buildings where, large clear spans are required by the program, a steel structure with conventional cast in place concrete foundations is often preferred for reasons of economy.  Steelwork that is efficiently fabricated off-site offers quality-assured, fully tested, and traceable products. On-site construction is fast and has minimal adverse local environmental impacts. These characteristics lend themselves well to warehouses, community centres, transit buildings, data centres and low-rise offices, among others.

For those involved with these building types for which steel is better suited, the overall embodied carbon in the structure can be reduced in several ways:

1. Design efficiently and purposefully. For example:

a. The consultants must work together to determine accurate design loading; excess loading compounds exponentially in the member design phase.

b. Work with the consultants and contractors to understand serviceability requirements of floors, finishes and curtain walls.

c. During preliminary building layout, opt for bays with a 3:4 rectangular aspect ratio for girders to beams. Also, aim for bay sizes of 7.5m x 10m to 10m x 13m to maximize deck spans and optimize framing weight and depth.

d. Utilize efficient framing systems, such as: SIN Beams, composite beams, gerber girder framing, open web steel joists (OWSJs), trusses, arches and tension only members wherever possible.

e. Avoid inefficient systems such as moment frames, transfers of gravity structure, Vierendeel trusses, etc., wherever possible.

f. Understand the transportation impacts created by the materials that you are choosing. Truck transportation produces 17 kg CO2 / tonne / 100 km, while train is 33% of that and marine shipping is 5%.

g. Prioritize members that are produced using an electric arc furnace (EAF). North American manufacturers typically use EAFs to manufacture steel for hot rolled shapes like wide-flange members, angles and channels.

h. Understand the benefits and limitations of hollow structural sections (HSS). These members are more efficient from a material standpoint, however if they are purchased in Canada, they currently come from basic oxygen furnace (BOF) coil which increases embodied carbon and reduces recycled content. If the HSS is purchased from US mills it is more likely that the coil will be coming from EAF.

This will change in coming years when the EAF mills at Algoma Steel and Dofasco come online in 2026.

i. Understand that plate, and cold form steel is often produced in using BOF. This impacts items such as roof deck for example which has high GWP values.

j. Investigate the use of high yield strength for tension members, simply supported columns, beam columns, and simply supported laterally restrained beams

k. Do not forget about the concrete works. Design foundations, slab on grade, floor deck and other elements efficiently and utilize reinforcement only as required Alternately, use fibre reinforcement instead of steel.

l. Work with the concrete suppliers to utilize low carbon mixes.

Scott Norris is Director of Engineering Solutions at Steelcon.

Find out more about carbon neutral steel designs at  www.steelcongoc.com, follow Scott Norris on LinkedIn or contact him directly, snorris@steelcongoc.com.

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Navigating the transformation

The evolving role of wood in sustainable construction

By Peter Moonen

Around the globe, the construction sector is in the midst of a profound transformation. Faced with an array of social, economic, and environmental challenges, the industry is adapting to new demands and regulations. As urban populations swell—80% of the world’s population is projected to live in cities by 2050, with Canada already at 81%—the need for affordable, high-performance multifamily housing has never been more pressing. The sector is grappling with rising operational costs, material expenses, and a shrinking labour force, all while striving to enhance energy efficiency and affordability in rapidly densifying urban areas.

The Carbon Conundrum

Decarbonizing construction is a crucial part of this transformation. For decades, regulations have focused on operational energy, pushing the industry toward buildings with minimal energy demand and related monthly costs. Recently, however, there has been a shift toward addressing the carbon footprint of the construction process itself. Wood, with its low carbon emissions, is emerging as a key player in this shift. As building codes evolve to permit greater use of wood, particularly mass timber, there is a significant opportunity to reduce the carbon footprint of construction.

In Europe, energy efficiency has long been a standard, and now low-carbon building policies are becoming more prevalent. Canadian cities like Vancouver and Toronto are following suit with initiatives to cut embodied carbon in new construction. Provincial and federal governments are also setting carbon reduction targets in their procurement practices, creating a ripple effect across the industry.

The Rise of Mass Timber

The past 15 years have seen a substantial growth in the mass timber sector in both Canada and the U.S. Building codes are increasingly recognizing the potential of mass timber products, which are now being used in structures previously deemed unsuitable because of their height and/or occupancy . Notable examples include Brock Commons/Tallwood House (Photos 1 and 2) , an 18-storey student residence  at the University of British Columbia and the Fast + Epp Home Office Building, a mixed use, 4-storey infill building in Vancouver. These structures demonstrate the viability of mass timber in high-rise and hybrid construction, blending wood with other materials for enhanced performance.

The Importance of Collaboration

For hybrid buildings such as these, designers and specifiers must work closely with contractors and suppliers to ensure that material choices align with the project’s goals. By fostering collaboration, teams can leverage the expertise of various stakeholders, ultimately leading to more innovative and efficient solutions. The transition from traditional construction methods to a hybrid approach is reshaping the way we build in Canada.

Code Changes

Changes to building codes have been instrumental in this shift. For instance, the National Building Code now allows encapsulated mass timber construction (EMTC) up to 12 stories, with some jurisdictions permitting up to 18 stories. This increased acceptance is largely due to rigorous research by the National Research Council of Canada and other organizations, which has validated the performance capabilities of mass timber and engineered wood products.

Peter Moonen is National sustainability Manager for the Canadian Wood Council.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Amexon Development Corporation wins prestigious IPAX Americas Property Award

The Residences at Central Park project by Amexon Development Corporation has won the coveted IPAX Americas Property Award for “Best Sustainable Residential Development” in Canada.

The globally-recognized IPAX Americas Awards honour outstanding achievements across the real estate sector from nine global regions, awarding projects that exemplify innovation, superior quality, and environmental responsibility.

Amexon’s award-winning Residences at Central Park in Toronto —a 12-acre master-planned community of five towers— contains numerous green technology measures, some of which include:

In the building:

• Vegetated roofs reduce energy consumption and absorb rainwater

• Photovoltaic modules supplement the building’s power needs

• High-performance thermal building envelope minimizes unwanted solar gain and heat loss

• Over 1,500 electric car charging stations service every parking space, including visitor parking spaces, a first in North America

• Energy-efficient LED light fixtures and motion sensors in corridors and common areas

• Intelligent building automation system for heating and cooling controls in common areas

• Next-generation building mechanical systems feature improved air flow and HEPA filtration systems

• Central building water filtration system

• On-site car-share service and bicycle-share service

• Convenient access to transit

In each suite:

• Individually metered electrical and water usage provide control over consumption and water-wise fixtures for showers, sinks and dual-flush toilets

• Individually controlled and programmable comfort systems to control heating and cooling from smartphone

• Low-voc finishes and significant use of hard-surface flooring for easy maintenance

“The Award is a testament to our ongoing commitment to sustainability and forward-thinking design,” said Ashling Evans, General Manager of Real Estate at Amexon Development Corporation.

The Residences at Central Park also recently won the Ontario Home Builders’ Association’s Project of the Year (People’s Choice Award) and named a finalist for the BILD Green Builder of the Year and the OHBA Green Building of the Year.

The project seamlessly integrates with the adjacent East Don Parkland to create a mixed-use community that represents the future of sustainable urban living in North America. centralparktoronto.com

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

New all-Canadian platform

Meeting sustainable building compliance in less time

What is it? – EcoSpex is a verified product specification platform designed to revolutionize how construction materials are specified for green and healthy buildings.

Who is it for – EcoSpex supports manufacturers by automating and digitizing the environmental certifications and other relevant documentation of their products on one platform so that Developers, Owners, Architects, Engineers, General Contractors, Interior Designers, and sustainability professionals can cut the time it takes to decide the suitability of products for sustainable building from hours to minutes.

Why Now, Why Canadian?

EcoSpex consulted with the Federal Government, numerous companies and Industry Associations across Canada to discover the need for an all-encompassing, fully digitized one-stop platform that collects, verifies and automates environmental certifications of manufacturers’ products accessible in Canada and suitable for Canadian climates. 

The platform quickly provides an accurate set of documents to assure project teams that a product can meet sustainability and performance goals and compliance with LEEDv4, LEEDv5, WELL®, ILFI, International Passivhaus Institute, Fitwell, Green Globes, BOMA and BREEAM.

EcoSpex Low Carbon Platform allows project teams to:

  • Access a Trusted Process
  • Streamlined Product Evaluation
  • New Product Alerts
  • Get Guidance
  • Powerful Search & Compare Tools

Ready to specify products faster while meeting green and healthy standards?

Contact Julie Scarcella today: julie@ecospex.com

705-445-1256

www.ecospex.com

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Prefabricated balconies Bring benefits in time, cost and performance

By Sam Estall

Prefabrication and modular construction are innovative approaches that can benefit a building project, and this includes balconies.

Reducing the time on site by not needing to manufacture balconies in-situ can be a time and cost-effective way to manage balconies on a development. Delivering fully assembled units means not only a decrease in cost, but also a reduction in risk.

And, since the floor of the prefabricated balcony is not continuous with the floor of the interior space, thermal bridging is all but eliminated.

Pre-finishing as much as possible in the factory reduces the requirement for secure storage on site – a further benefit particularly ideal for projects in city centres like Toronto or Vancouver where site space can often be extremely limited.

On-site health and safety issues, such as the risk of errors and potentially costly project delays due to bad weather, can be reduced with a prefabricated solution.

Finally, this increase in quality stretches out to quality assurance too – prefabricating balconies in factory conditions ensures a high degree of quality control which is almost impossible to achieve on site.

Prefabricated balconies do need to be designed to ensure compatibility with modular construction processes. Ensuring that the balcony design integrates seamlessly with other building systems, such as façade elements and structural supports, can enhance overall project coordination and efficiency.

Compliance with step codes in Canada must also be considered. Having a prefabricated balcony can lead to sustainability benefits, but making sure that balcony designs comply with relevant building codes and regulations, including requirements for structural integrity, fire safety, and accessibility, are crucial for ensuring code compliance.

Prefabrication is reinventing modern balcony construction – as time goes on, we at SAPPHIRE are seeing signs that the modular approach to balcony manufacturing could be on its way to becoming the norm.

With the various benefits of a prefabricated approach such as faster installation times, minimized thermal bridging, and quality assurance, a building development can benefit from not only a streamlined approach, but a lighter, safer, kinder one too, with more possibilities than ever before.

To learn more about how a prefabricated solution could benefit your project, visit balconies.global/visit-us-canada-showroom.

Sam Estall, Content Marketing Manager, Sapphire Balconies Ltd.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Builders are going to shape the future. Here’s how.

By: Chris Ballard

We are pleased to participate in the Passive House issue of SABMag. Builders, and the building industry, have a crucial role to play in the struggle to adapt to and mitigate the effects of climate change, and I foresee that Passive House is going to play a big part in addressing that struggle.

Our built environment is a major contributor to climate change. In large urban areas, emissions from buildings contribute over 50 per cent of greenhouse gas (GHG) emissions, and over 30 per cent globally. As governments set ambitious targets to reduce GHGs, builders are going to be increasingly called upon to deliver higher performance buildings.

At the same time, Canada is grappling with a national housing crisis. In Ontario alone, the provincial government has promised no less than 1.5 million new homes by 2031. We know we can’t build our homes to previous standards because of climate change – and governments at all levels are beginning to insist new buildings be built to increasingly high-performance standards. Still, it’s those on the ground — architects, contractors, skilled trades and developers, as well as lenders — who will ultimately become the gatekeepers for better, low energy consumption builds.

Industry players are key to educating homeowners and the public as to the standards that will deliver on the promise of high-performance buildings that achieve net-zero or near net-zero carbon without relying on carbon offsets or renewable energy add-ons. We see “green” standards everywhere, and there are numerous claims as to the efficiency of each.

While I’m not here to make claims for or against other standards, I will say that “green washing” is a major problem — and not just our industry. Still, it is an issue we need to address head on, and tackle collectively, through education and verification.

There are, currently, enormous burdens on our power grids. As extreme weather events escalate, our cities and towns face ever greater risks of blackouts and grid failures. We need to enter this into the equation and build homes that will reduce those burdens by ensuring cooling and heating loads are minimized through good design and construction. We need buildings that can keep people safe and comfortable at home, even in the event of power outages, or extreme heat and cold. Passive House provides one such solution. The alternative is stark. Take, for instance, the horrifying situation arising from B.C.’s 2021 heat dome, which caused the deaths of 619 people. 

People in our industry are often stymied due to the very simplicity of the Passive House standard, because it advocates for passive energy consumption — through airtight building envelopes, superior ventilation, and other passive conservation techniques. Buildings that consume far less to heat and cool than the average home, rather than more, can be a difficult concept to grasp, but that is precisely what Passive House delivers.

We now have nearly 50 years of science-driven data to back up these claims, and Passive House has been recognized as the standard to meet for affordable, high-performance buildings.

And, as our industry moves further into discussing the role of operational carbon and embodied carbon, Passive House is likewise evolving. The Passive House community can employ a new PHRibbon tool that helps calculate embodied carbon over the life of the building, a tool which also models future increases to average temperatures.

Passive House Canada is likewise poised to support the building industry, as financial institutions and governments more and more make investment decisions based on Environment, Social and Governance (ESG) policies of the developer, and of its design, engineering and construction companies. Passive House is perfectly suited to address the “Environment” in ESG, and we would be delighted to explain how.

Resilient buildings which keep people safe and comfortable should be the norm, not the exception, and that is precisely where I want to leave this thread. As builders, you have enormous power to transcend building policies and their real-world impacts. Get educated. If you haven’t already been trained and certified in Passive House, I urge you to do so. If price is an issue, know that government grants are available, and we offer competitive pricing for Passive House members.

Become an advocate of better buildings. Educate your clients, your manufacturers, and your government. Insist on high performance projects that live up to their promise — not just in five years, but in 25 or 50. Finally, I urge each of you to simply build better. We’ll all feel better, and live better, for your efforts.

www.passivehousecanada.com

Chris Ballard is a former minister of both housing and environment and climate change for Ontario, and is currently the CEO of Passive House Canada, a national non-profit professional association that advocates for high-performance buildings using the Passive House standard.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Insurance Pricing For Mass Timber Buildings Compared to Concrete/Masonry

Sponsored by Frank T. Came and associates

By Frank Came

It has long been known that insurance costs for wood frame buildings are higher than the rate for comparable structures built with masonry, concrete, or other non-combustible materials. The cost differential could be seven to ten times higher for low to midrise wood buildings.

Questions have arisen as to whether the same pricing differential exists for ensuring taller buildings constructed with more advanced engineered wood products such as cross-laminated timber (CLT) or glue-laminated timber (glulam) are promoted as being more robust and more fire-resistant than concrete or steel.

Tall mass timber buildings, some approaching skyscraper heights, have been constructed in various parts of the world to demonstrate that building with wood can be faster, less costly, and more environmentally friendly than comparable concrete or steel structures.

Extensive research has been undertaken to test the real-world performance of these structures in terms of resistance to extreme weather events and their ability to withstand fire or water damage in times of emergency. In several jurisdictions, fire and building codes have been adjusted to accommodate the greater use of engineered wood products in the construction sector.

And while efforts have been made to have mass timber reclassified for insurance purposes as a building product distinct from conventional wood frame construction, insurers have been doubtful about moving in this direction.

While it is accepted that tall mass timber structures represent a distinct segment in the construction market and that new technologies are involved, from an insurance perspective, the risk factors are viewed as higher than for buildings constructed with concrete or steel.

Recent research in the Canadian construction sector suggests insurance the costs to insure tall wood buildings could range from five to seven times higher than for comparable structures built with non-combustible materials. Not only are premiums higher, but securing full coverage for mass timber structures is more complex, as underwriters are reluctant to assume total exposure to the risks involved.

The simple fact that wood burns and will continue to do so until extinguished introduces safety and property protection issues that must be accounted for. Despite tests demonstrating that mass timber walls and beams provide fire resistance performance comparable to concrete or steel is of little consequence to underwriters.

Allowing a building’s occupants time to escape is essential, but from the underwriter’s perspective, the question is what happens beyond that escape window. Will the fire extend through compartment walls, service ducts or other spaces and consume different parts of the building, adding to the extent and costs of property damage? What measures are in place to extinguish fires, not simply contain them?

These issues are difficult to quantify, and the golden rule of insurance is that you cannot insure what you can’t quantify. Factors influencing the pricing differentials go far beyond the combustibility issue. Mass timber buildings involve new technologies in building materials and designs, as well as just-in-time construction methodologies and skill sets that are not as widespread as conventional construction methods.

While underwriters will look at combustible void protection, fire suppression and extinguishment measures, they will also look at water exposure risks not only from fire fighting but also from flood and extreme weather perils. Indeed, water damage remains the most significant risk factor affecting insurance pricing, followed by risks of damage from fire, extreme weather events, or other incidents such as earthquakes.

Other factors considered are the scale of the building and the extent of material damage to property or from business interruption exposure; design features that could affect access or egress and the spread of water; and the location of the building relative to first responders’ capabilities. Also considered by underwriters are the track records of building contractors or property managers in building construction and post-construction operations.

The high costs to repair, remediate, or deconstruct wood structures partially damaged by fire or water are of particular concern to insurance providers. While masonry and concrete structures are relatively easy to assess, processes to verify the structural integrity and other features of mass timers are costly, time-consuming, and sometimes inconclusive.

The fact that wood building projects are more vulnerable to all these risks has prompted some insurance companies to vacate or severely limit their involvement in the wood frame or mass timber markets. This is why most wood construction projects require multiple insurers, each limiting their risk exposure.

Risk exposure policies of the world’s major reinsurance companies are also influenced by losses arising from natural or artificial disasters. In ‘harsh market conditions, local insurance companies have little flexibility to circumvent these industry-wide policies, which contributes to the need for many insurance companies to be involved in providing coverage for tall wood construction projects.

To sum up, insurance is based on indemnifying against risks. Risks and uncertainties are not the same.  Uncertainties stem from a lack of knowledge, and reducing risks involves reducing those doubts. Pricing insurance coverage is based on the probability that certain risks will not occur.

The more significant the chances that such risks will happen, the higher will be the premiums. In this regard, ensuring tall mass timber structures currently involves more uncertainties than conventional construction. Hence premiums will continue to be higher.

Mass Timber Buildings are a niche design practice in today’s construction market, but they are evolving. The trend in several countries suggests more tall timber projects will rise over the next decade. What the next generation of projects will look like depends on what designers and other industry stakeholders can and will do to resolve the insurability and the many other issues discussed in this article. 

References: The findings are an update of research undertaken by Globe Advisors in 2016 entitled Study of Insurance Costs for Mid-Rise Wood Frame and Concrete Residential Buildings. Frank Came was the Project Director for the original study.

Frank Came, Principal, Frank T. Came and Associates, an Independent Consultancy based in British Columbia.

Download the Full Study at: https://www.edchats.ca/fullstudy

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.