City of Calgary Composting Facility, Calgary, AB

Technical Award | Stantec

Jury comments: This facility represents a significant milestone on the road to a circular economy, by converting millions of kilograms of domestic organic waste into valuable compost each year. By-products of this process are also re-engineered to create other marketable commodities, while solar panels, rainwater harvesting, grey water recycling and other environmental strategies have helped this project achieve a LEED v4 Gold rating – the first in Canada.

Nearly 60% of single-family household garbage is compostable waste in Calgary. The City wanted to change this. First and largest of its kind in Canada, the Calgary Compost Facility (CCF) diverts 85 millionkilograms of material from landfills annually by converting it into a marketable product—compost. Opportunities to convert other resources that might otherwise have been overlooked also included:

• 100% of the harvested rainwater is used for the composting process or to flush toilets and urinals

• Greywater from the sinks and showers is diverted into the composting process

• Solar energy is captured via an on-site photovolatic solar farm

• Odour control is maintained using recovered wood chips

• Sulfuric acid used to remove ammonia from the exhaust air in the composting process creates hazardous waste, ammonium sulfate. A process was developed to convert this to a neutralized crystallized form, which is used as fertilizer for agriculture.

These innovative strategies were implemented despite a tight construction schedule. Ina visionary move, the CCF designed the adjacent Administration and Education Building to reach new sustainable heights. It is the first building certified under the LEED® v4 Building Design + Construction rating system in Canada, achieving Gold certification.

The Administration and Education Building boasts a high-performance envelope, reducing the amount of energy lost to the outdoors. It also takes advantage of energy-saving technologies such as condensing boilers, exhaust air heat recovery and high efficiency domestic water heaters.

PROJECT CREDITS

  • Client:  City of Calgary Waste and Recycling Services
  • Architect:  Stantec
  • Civil/Electrical/Mechanical/Structural Engineer:  Stantec
  • General Contractor: Chinook Resources Management Group
  • Landscape Architect:  Stantec
  • Commissioning Agent:  WSP
  • Photos:  Ian Grant

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 65.3KWhr/m²/year
  • Energy intensity reduction relative to reference building under ASHRAE 90.2 2010 = 39.1%
  • Water consumption from municipal sources = 2,462 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 50.4%

The administration areas are heated with Viessmann Vitodens 200-W condensing boilers.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Radium Hot Springs Community Hall and Library, Radium Hot Springs, BC

Institutional [Small] Award | Urban Arts Architecture

Jury comments: This community project in a small town in the mountains of British Columbia reimagines the meaning of ‘community investment’. With a community-centred procurement focus, the project was designed to optimize the social and economic benefits for those living and working within a 100-mile radius of the site and, as such, creates a new ‘recipe’ based on the locally-available ingredients of materials, technology and craft skills.    

The village of Radium Hot Springs Is located in the mountainous southeast corner of British Columbia. The new Community Hall and Library occupy a prominent corner in the centre of the village, overlooking the Legends Park kettle hole.

Designed as the “100 mile” building, the project maximizes the use of local materials and trades in the Columbia Valley. The project goals were to: support economic sustainability through a unique project process that would maximize the use of local resources, both material and human; demonstrate the use of renewable resources and innovative replicable building systems; and create a building that would respond to the micro-climate of the site.

Critical to the success of the project was an integrative design process that identified local materials, resources and labour, thereby dramatically reducing the life cycle embodied energy and overall carbon footprint of the development. The design process resulted in a building that maximized the use of local wood fibre, utilizing approximately 288 cubic metres of wood products harvested from woodlots within 50 kilometres of the site and processed at the local Canfor mill just one kilometer away.

The structure comprises dowel laminated timber (DLT) panels combined with glulam posts and beams. DLT is a mass timber structural panel constructed of standard dimensional lumber, friction-fit together with hardwood dowels, not requiring the use of nails, screws, or adhesives.

This combination results in a structural system with a high potential for demountability, adaptability and reuse. Much of the material fabrication was carried out locally, including the panels which  were prefabricated off-site in Golden, 60 kilometres north of Radium, and transported to the site in a choreographed sequence to maximize efficiency. The cladding was milled by a local mill and charred in Brisco, eight kilometres from the site.

The building is organized and oriented to maximize passive strategies with a long linear form on the east-west axis, permitting natural daylighting and cross ventilation. Strategically located roof overhangs control solar exposure.

Window locations are carefully calibrated to capture the views of the mountains and connect to the park while maintaining less than 40% window-to-wall ratio for energy efficiency.

PROJECT CREDITS

  • Client:  Village of Radium Hot Springs
  • Architect:  Urban Arts Architecture
  • Civil Engineer:  Core Group Consultants
  • Electrical Engineer:  Applied Engineering Solutions
  • Mechanical Engineering:  Rocky Point Engineering Ltd.
  • Structural Engineer: Equilibrium Canada
  • General Contractor:  Ken Willimont
  • Landscape Architect:  Hapa Collaborative
  • Photos:  Dave Best

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 274 KWhr/m²/year
  • Energy intensity reduction relative to reference building = 36%
  • Regional materials (800km radius) by value = 80%

Lighting and acoustic panels are built into the roof panels. Uponor supplied PEX piping for the heating system consisting of air-source heat pumps and high-efficiency Viessmann Vitodens 200-W boilers.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

Wellington Building Rehabilitation, Ottawa, ON

Existing Building Upgrade Award | NORR Architects and Engineers

Jury comments: Now widely acknowledged as one of the cornerstones of a sustainable built environment, the renovation and repurposing of existing buildings conserves embodied energy, supports social sustainability and cultural continuity. This project carefully and cleverly reconciles the competing challenges of seismic upgrading of the structure, updating of building services and infrastructure and the constraints of heritage conservation.

This project transforms an insurance office building, consisting of a historic 1927 Beaux Arts landmark and a 1959 addition, into facilities for the House of Commons. The program includes parliamentary offices, multipurpose rooms, library of parliament facilities, cafeteria, ground floor retail space, security processing, as well as two levels of underground support facilities.

The transformation involved stripping the building back to its internal structural frame work, a complete building system replacement, seismic upgrades, heritage restoration, the insertion of a new more robust structural core and new multi-storey spaces.

The project achieved a four Green Globes rating through the preservation of the building core and shell, the reuse of the copper roof, stone and other materials, connection to the district energy plant, solar panels for domestic water pre-heating, heat recovery units, reduced water requirements, a rainwater cistern, a green roof, and room sensors to regulate temperature and light levels. 

A sky-lit atrium brings natural daylight into the upper floors of the building reducing artificial lighting needs. A living wall biofilter provides a natural aesthetic, dampens noise, and cleans and humidifies the air in the ground floor lobby.

The repurposing of existing building stock rather than discarding and building new reflects the priorities of the federal government. The challenge was to rehabilitate the building in a manner that would ensure another 90 years of life while respecting its heritage aspects. While the existing material pallet of stone and bronze has stood up well over time, the mechanical, electrical systems, and exterior windows needed complete replacement and the seismic performance needed significant upgrading.

PROJECT CREDITS

  • Client  Public Services and Procurement
  • Architect  NORR Architects and Engineers
  • Heritage Architect  FGMDA
  • Structural Engineer  Adjelelan Allen Rubeli
  • Mechanical/Electrical Engineer: NORR Architects and Engineers
  • General Contractor:  Ellis Don Corp
  • Photos:  Doublespace Photography

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) =  213 KWhr/m²/year
  • Energy intensity reduction relative to reference building under ASHRAE 90.1 2007 = 34%
  • Water consumption from municipal sources = 5,458litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 64%
  • Recycled material content by value = 20%
  • Regional materials (800km radius) by value = 20+%
  • Construction waste diverted from landfill = 87%

Viessmann supplied solar hot water roof panels. The atrium links the reconstructed 1927 and 1959 lobbies to the spaces above via escalators and a sculptural stair. The Nedlaw living wall biofilter is 8.9 m wide x 4.4 m high and removes VOCs from the atrium area, creating 4,000 cubic feet of virtual outside air per minute. Uponor radiant heating systems are used in selected perimeter floor areas. 

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Bank of Canada Renewal, Ottawa, ON

Existing Building Upgrade Award | Perkins+Will

Jury comments: This major rehabilitation and revitalization project, driven by quantitative issues of obsolete infrastructure, poor energy performance and related carbon impacts, and an outdated working environment, has been addressed with aesthetic sensitivity and restraint. Innovative structural upgrades enabled the restoration of the integrity of this 1970s office tower by Arthur Erickson,  while the 1930s centre building and its immediate surroundings  have been transformed into valuable new public amenities.

Located just west of Parliament Hill in Downtown Ottawa, the Bank of Canada Head Office complex comprises 79,500m² of offices and operation spaces. The original Centre Building was built in the 1930s; the twin office towers and connecting atrium being added in the 1970s. Completed in 2017, this project included the comprehensive renewal of the existing complex, including some reconfigurations and additions to the program.

A new museum invites and educates the community about the Bank’s role in the Canadian economy. The pyramidal glass entrance pavilion and the enhanced public realm that surrounds it form an abstraction of the Canadian landscape and functions as an accessible, multi-faceted public realm throughout the year.

Major drivers for renewal were the performance and infrastructure deficits of the facility, energy upgrades and carbon reductions, and modernization of the workplace. Within the towers, floor plates and waffle slab ceilings were restored to their original open plan concept.

The renovated towers were designed to be modular, allowing for a diverse range of uses so that each contains a combination of private and collaborative spaces.

The Centre Building accommodates both offices and conference facilities, while the atrium provides a variety of social spaces.

The design looked to maintain as much of the existing building infrastructure as possible, to lower both costs and negative environmental impact. Passive design strategies include revealing floorplates, allowing for deeper daylight penetration and greater access to views to the exterior and atrium.

PROJECT CREDITS

  • Client:  Bank of Canada
  • Architecture/Interior Team: Perkins + Will
  • Civil Engineer: Novatech Engineering Consultants
  • Electrical/Mechanical Engineer: BPA Engineering Consultants
  • Structural Engineer:  Adjeleian Allen Rubeli Limited
  • Project Manager:  CBRE Limited/Project Management Canada
  • General Contractor:  PCL Constructors Canada Inc.
  • Landscape Architect:  DTAH
  • Food Service/Commissioning Agent:  WSP
  • Heritage ConsultantEvoq Architecture
  • Building Envelope:  ZEC Consulting
  • Building ScienceCLEB
  • Sustainability Consulting Team:  Perkins + Will
  • Security:  LEA
  • A/V:  Engineering Harmonics
  • Acoustic:  HGC
  • Cost Consultant:  Turner & Townsend
  • Lighting:  Gabriel MacKinnon/Perkins + Will
  • Code & Life Safety:  Morrison Hershfield
  • Photos:  Younes Bounhar

PROJECT PERFORMANCE

  • Energy intensity = 183 kWh/m² /year
  • Energy savings relative to reference building = 44%
  • Water consumption = 4,645L/occupant/year (based on 250 days operation)
  • Water savings relative to reference building = 35%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Sustainable Energy and Engineering Building

Insulated precast concrete façade contributes to energy savings in landmark building

Simon Fraser University’s new, five-storey Sustainable Energy and Engineering Building (SE3P) in Surrey, BC represents the University’s first major step in expanding beyond its Central City campus to become a distinct academic precinct within Surrey’s growing and revitalized City Centre neighbourhood.

By: Venelin Kokalov

Funded in part by the Federal Government’s Post-Secondary Institutions Strategic Investment Fund (SIF), this distinctive 16,000 square metre (173,000 square feet, excluding single-level underground parkade) facility is purpose-built to house the new Sustainable Energy and Engineering (SEE) program which offers an integrated, multi-disciplinary approach to energy engineering education to support the clean tech, renewable and sustainable energy sector.

With a building program organized around a light-filled central atrium and sweeping staircase punctuated with trees at varying levels, SE3P comprises teaching and research labs; collaboration and study spaces; faculty, graduate and administrative offices; recreational rooms; undergraduate and graduate lounges, student services, and plant maintenance facilities. When fully operational, approximately 515 students and 60 faculty and staff will use the building. Its 400-seat lecture hall, situated on the southwestern portion of the ground floor, will serve the full SFU Surrey campus as well as the broader Surrey community.

The project’s fast-track delivery method necessitated a significant overlap in the design and construction phases. Utilizing prefabricated precast concrete elements for the façade became a key consideration, not only for ensuring long-term durability and reduced maintenance, but because it also enabled the building to be closed in quickly to meet the tight construction schedule.

As a result, SE3P’s compelling architectural expression is a unique façade composed primarily of framed alternating strips of energy-efficient, undulating precast concrete double wythe insulated panels and reflective glazing. Drawing inspiration from the geometric pattern of electrical circuit boards, the precast concrete panels also symbolize the technological subject matter that will be taught within the building.

By fabricating the exterior finish, thermal and moisture protection, and interior finish off-site as a single pre-assembled system, the project’s schedule, performance and energy-saving goals were maintained while mitigating on-site construction noise and debris. The heavier precast concrete elements with reflective glazing help to animate the façade and are juxtaposed with the transparent glazing at the building’s ground plane which extends the outdoor public realm into the interior public space, engaging the local community.

Venelin Kokalov is Design Principal at Revery Architecture Inc.

PROJECT CREDITS

  • Owner Simon Fraser University (SFU)
  • Architect  Revery Architecture Inc.
  • Structural Engineer  WSP
  • Mechanical Engineer  The AME Consulting Group Ltd. (AME Group)
  • Electrical Engineer  AES Engineering Ltd. (AES)
  • Building envelope  Morrison Hershfield Ltd.
  • Precast Concrete Engineer  Kassian Dyck & Associates
  • Contractor  Bird Construction
  • Precast Concrete Supplier and Installation SureClad a subsidiary of Surespan Structures, a member of the Surespan Group
  • Photos  Courtesy of Revery Architecture. Construction photos by Surespan Construction Ltd.

Variable air volume (VAV) units, diffusers, registers and grilles were provided by E.H. Price (Price Industries). Other HVAC equipment, namely split air conditioning units, fan coil units, and chillers were provided by Daikin.

The building uses CES light sensors, manufactured by PLC Multipoint, Inc. of Everett, Washington.  The sensors measure the amount of daylight in each space so that the building’s Energy Management System can minimize the use of artificial lighting, saving energy and money while creating optimal work environments. 

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.