Dedicated to sustainable,
high performance building

Eco Flats 1.0

Upgrade preserves existing building while supporting low carbon living

By Carla Crawford

Eco Flats 1.0 is a conversion of an aged Toronto rowhouse into an energy-efficient, all-electric triplex. The ambitions for this project were: to increase urban density; provide quality housing during a housing crisis; create homes for multiple tenants that support a carbon-free lifestyle; and make it a super energy-efficient, all-electric building.

With the Ontario power grid being 94% renewable, it was not only possible to do this, but also to disconnect the original gas supply to the building. With greatly improved airtightness and super insulation, the overall energy intensity of the renovated building is 108 kWh/m2/year, an 89% reduction compared to the original.

With a walk score of 93, transit score of 99, and bike score of 100, this property was the perfect choice. The nearest intersection has two streetcar lines and one bus line, two of which connect to the subway in just a few minutes. The intersection is also a hub for the West Toronto Railpath, which connects pedestrians and cyclists to The Junction neighbourhood, and is slated for expansion that will eventually connect to downtown. In addition, the local area is well serviced with grocery stores, schools, daycares, walk-in clinics, a hospital, a YMCA, and more. Everything is accessible without reliance on a car.

The design optimizes daylighting, as well as passive heat gain and cooling. This does not always mean more glazing: large third floor windows required shading to reduce overheating. Each of the three apartments are equipped with their own independent Energy Recovery Ventilator (ERV), which reduces energy consumption by transferring heat and moisture from outgoing air to fresh incoming air.

The apartment layouts are designed to accommodate a variety of tenant types: individuals, families and roommates. Each apartment has its own unique entrance directly from the outside, with the upper unit entering from the front sidewalk, and the main and lower apartments entering via a communal patio space in the rear.

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 108KWhr/m2/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 89%
  • Water consumption from municipal sources = 16,060 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 45%
  • PROJECT CREDITS
  • Owner/Developer/General Contractor Lolley Knezic Projects Inc.
  • Architect  Solares Architecture Inc.
  • Mechanical Engineer  ReNü Engineering Inc.
  • Structural Engineer  Kattakar Engineering Associates Inc.
  • Commissioning Agent/Envelope Testing  Blue Green Consulting Group
  • Grey Water Systems  Greyter Water Systems
  • Photos  Solares Architecture Inc.
  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Lumenpulse Headquarters

New workplace mirrors client’s attention to design, and cuts energy use

By Jim Taggart

Located on the south shore of the St. Lawrence River across from Montreal, Longueuil has long been a preferred location for leading high-tech industries including aerospace and renewable energy.

These have now been joined by Lumenpulse, an international lighting solutions company that designs, develops, manufactures and sells a wide range of high-performance, sustainable LED lighting solutions for commercial, institutional and urban environments. Together with its affiliate companies, it has successfully completed major installations in North America and Europe, including offices for Microsoft in Seattle and H&M in Florence, Italy.

The company wanted to create a head office that would embody its values of innovation, collaboration, communication and transparency, as well as serving the needs of its employees and its business operations. The site, one of many considered, was chosen for its location close to residential areas, arterial roads and transit routes for employees; and to the Montreal St. Hubert airport and Highway 10 leading to the US, to serve the needs of the company’s export business.

On the outskirts of a long-established business park, the site had been abandoned for many years.  The land was remediated in preparation for the new building, now encircled by native landscaping overlooked by patios and terraces. Existing concrete slabs were crushed for use in landscaping and existing service infrastructure was reused wherever possible.

Through its design and program organization, the new building captures and communicates the history and culture of Lumenpulse, providing the company an architectural identity that reinforces its corporate brand. Montreal-based Lemay provided transdisciplinary services in architecture, interior design, graphic design and urban planning.

The complex houses a production space, laboratory, design and engineering, offices and an experiential space, supported by robust security and electrical systems. As a whole, it is characterized by the quantity and quality of natural light and the creative use of low energy LED lighting throughout the building.

Together with a high-performance building envelope, a low-albedo white roof to reduce the heat island effect, high-efficiency mechanical systems and heat recovery ventilation, overall energy consumption is 42% less than the ASHRAE 90.1 benchmark.  Two-thirds of primary energy is renewable with fossil fuel energy used only when the systems are in heating mode.

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 177KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 42.4%
  • Water consumption from municipal sources = 3,154 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 46.5%
  • Recycled material content by value = 12.7%
  • Regional materials (800km radius) by value = 37.5%
  • Construction waste diverted from landfill = 78.2%

PROJECT CREDITS

  • Owner/Developer  9341-0983 Quebec Inc. 
  • Architecture/Structure/Interior Design  Lemay
  • General Contractor  Groupe Montoni (1995) Division Construction Inc.
  • Landscape Architect  Beaupre et Ass.
  • Civil Engineer Les consultants MESC
  • Electrical Engineer  Dupres Ledoux
  • Mechanical Engineer  Dupres Ledoux
  • Photos  Stephen Bruger

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

UBC Okanagan, Skeena Residence

Multi-unit residential building design takes care in detailing

By Brian Wakelin

The new UBCO Skeena Residence at the Okanagan Campus of the University of British Columbia comprises approximately 72,600 gross square feet over six storeys and has been designed to Passive House standards. The ground floor includes common housing amenities and building service spaces while the upper five storeys include accommodation for 220 students together with associated social spaces. Skeena completes an ensemble of residence buildings encircling the central green space on campus – known as Commons Field. The project focuses on student life and support services while meshing seamlessly with the existing campus. 

The five identical residential floors include shared bathrooms flanked by two bedrooms. This layout allows space for quiet study when required. Additionally, each floor contains both a study lounge and a house lounge with views of the surrounding mountains, the lounge being equipped with a kitchenette, dining table and couches. Locating these spaces at opposite ends of the floor ensures that quiet study is not interrupted by noise from the social home lounge.

On the first level, the Skeena Residence has a large laundry room located adjacent to the student lounge. Separated by a glass wall, the relationship between the two spaces encourages chance meetings and spontaneous gatherings. Moreover, the transparency offers passive surveillance, or visibility that promotes a sense of security. In short, the design of the building supports community life. 

The design of the Skeena residence was driven largely by the requirements of the building program and by the successful layout of the neighbouring student residence. The two bedrooms with shared bathroom module uses an optimal length and width, which also optimizes the number of floors required to accommodate the building requirements – the objective being to minimize the amount of energy required to heat and cool the building. 

This Passive House goal of minimal energy use for heating and cooling also informed other design choices. Given that irregular building forms with multiple indentations and corners, or projections such as steps, overhangs, or canopies create challenges for insulation, airtightness and the elimination of thermal bridging, a simple and efficient planar volume performs most optimally. Mechanical systems also work best within a narrow, contiguous box. This limits aesthetic parameters to material, colour, pattern, and texture. Thus, the simpler the building, the more important material choices and detailing become.

The exterior is clad in a combination of brightly coloured fibre cement panels and darker metal panels. A feeling of depth is created by bringing the fibre cement panels forward of the metal, emphasizing the depth of the window reveals.  This gives articulation to the simple form, without introducing complexity that would compromise energy performance.

Design decisions are also swayed by other practicalities such as standard and locally-available materials and techniques. The building is a wood frame with some concrete on the ground floor. A wood structure was chosen for its inherent insulative properties as well as its ready availability and ease of construction. 

Eco Habitat S1600

 

Low life cycle carbon footprint guides compact design

By Emmanuel Cosgrove

This prefabricated kit home (the first out of the factory) of 180 m² was originally assembled for a 2019 home show at the Montreal Olympic stadium, before being disassembled and moved to its permanent location outside the town of Wakefield. Now functioning as a family home, the operating energy consumption will be monitored and recalculated after 12 months of use.

The design objective was to create a housing option with a low ‘cradle to grave’ life cycle carbon footprint, through compact design, careful material choices, and other strategies that would further contribute to low operating energy and GHG emissions.

While new construction in both residential and commercial sectors is showing incremental reduction in operating energy and related emissions in response to higher energy efficiency standards, the ‘elephant in the room’ is ‘grey energy’ – that associated with the extraction, transportation, fabrication and installation of construction materials. Given the current average life cycle and energy performance of buildings, only about half of the energy expended over the life of a building is from the operations phase, the other half is from the construction phase.

To demonstrate the importance of calculating embodied energy, Ecohome’s Quebec-based affiliate Ecohabitation did a carbon calculation of the Eco-Habitat S1600 prefab kit house using the Athena Impact Estimator for buildings software, which assesses the environmental impact of each building component. Doing this analysis early in the design phase identifies where a building is scoring high, and enables designers to find alternative materials and products to lower the carbon impact of the project.

A low carbon building strategy begins with sourcing natural building materials produced as close to the site as possible, using the minimum amount of energy and with few if any chemical additives.

This not only reduces emissions and pollution, but equally importantly, leads to healthier and safer indoor environments for occupants.

The single greatest consideration when reducing the carbon footprint of a building is to reduce the use of concrete as much as possible; then to reduce the impact of the concrete that must be used for structural integrity or thermal mass. Look first for locally-available sources of concrete that include recycled content, or choose a formula that has a lower carbon footprint than regular concrete. Design choices can also contribute to a reduction in concrete use; for example, a slab on grade rather than a full  basement. The Wakefield S1600 house uses a slab on grade solar air-heated radiant floor.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Green Gables Visitor Centre

Phase II expansion respects tradition in pursuing LEED Gold

By Kendall Taylor

The Green Gables Visitors Centre is situated on 16 acres of rural land in Cavendish, Prince Edward Island that was the setting for the highly successful 1908 novel ‘Anne of Green Gables’ by Lucy Maud Montgomery. The property includes several locations familiar to readers: the main Green Gables house, the Haunted Wood trail and Lovers Lane. The property was acquired by Parks Canada in the 1930s and has become an extremely popular tourist destination for PEI.

A 2015 survey determined that the existing facilities were in need of renovation and expansion to accommodate a growing number of visitors from Canada and around the world. Parks Canada reacted by creating an extensive program which would be constructed in three distinct phases. Phase I was completed in the spring of 2017. Phase II, consisting of the Lucy Maud Montgomery Exhibition space, a main lobby atrium, a gift shop, and public washrooms, was completed in the spring of 2019.  Phase III was to decommission the temporary gift shop in Phase I and transform it into a new cafe and commercial kitchen.

The Visitors Centre acts as the main arrival point, connecting the property through a circulation axis that also frames views to the original farmhouse. A campus approach has been taken to help distribute visitors (who may number as many as 1100 at a time) across the site. Parking has been reorganized to separate bus, RV and car traffic from those who arrive by bicycle or on foot.

Parks Canada wanted a structure that would be respectful of the historic house and the vernacular buildings of the region, yet provide highly functional modern visitor facilities. Heritage restrictions apply to the Green Gables House and courtyard, but in the areas where the Visitor Centre is located are much more relaxed.  This offered the opportunity to reinterpret the wood building tradition of PEI in a contemporary way.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Aurora Coast Cannabis Innovation Centre

Well being, energy and water conservation top the list at research station

 

 

By Heidi Nesbitt

Aurora Coast is a new cannabis research centre located in the Comox Valley on Vancouver Island. This unique facility provides a supportive and nurturing workplace for Aurora’s scientists to expand their genetics and breeding research, with the goal of realizing the full human benefit of the cannabis plant. 

Context 

The project aims to transform public perception of a previously illegal, underground industry, by housing it in a facility that fosters creativity and innovation. The first phase of the project consists of a mass timber building containing offices, labs, meeting rooms and support spaces for the adjacent greenhouse. A transparent network of collaborative workplace hubs was designed to encourage informal interaction and enhance the creative potential of the research team. 

As a project centred around plant health and vitality, every aspect of the building and site is designed to connect occupants to nature and to support health and well-being: an exposed, mass-timber structure was chosen for its low environmental footprint, and to provide a biophilic backdrop to what might otherwise have been a sterile laboratory environment; clerestorey windows bring natural daylight deep within the high-security, restricted-access areas; and views are provided to the restored pollinator habitat and orchard that surrounds the building. 

Cannabis facilities face unique challenges, including security, odour control and public stigma. To help gain the support of the local community, a large, environmentally degraded, industrial site at a prominent intersection was rejuvenated by providing extensive, on-site stormwater management, and by restoring the ecological integrity of several hectares of land. The larger environmental challenge was to provide cannabis plants with the steady warmth, light and water they need to thrive without creating additional strain on local resources. 

Heidi Nesbitt, Architect AIBC CP MRAIC LEED AP  ENV SP, is an associate with Local Practice architecture + Design in Vancouver.

PROJECT CREDITS

  • Owner/Developer  Aurora Cannabis
  • Architect  Local Practice Architecture + Design
  • Interiors  Albright Design
  • General Contractor  Heatherbrae Builders
  • Landscape Architect  Lanarc
  • Civil Engineer  McElhanney Consulting Services Ltd.
  • Electrical/Mechanical/Structural Engineers  Associated Engineering (B.C.) Ltd.
  • Envelope Consultant RDH
  • Passive House Consultant  Tandem Architecture Écologique
  • Greenhouse Consultant  ALPS

PROJECT PERFORMANCE

  • Energy intensity (building) = 162 KWhr/m²/year
  • Water consumption from municipal sources = 8135 litres/occupant/year
  • Reduction in water consumption relative to reference building = 5 %
  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

  •  

SELKIRK REGIONAL HEALTH CENTRE

Design makes access to natural light and the outdoors fundamental to patient health

Like any city that is reaching a new level of livability, Selkirk, Manitoba has grown to need significant health services and facilities for local residents and those living in the region. The new two-storey, state-of-the-art, LEED Gold Selkirk Regional Health Centre (SRHC) is a 184,000 square foot regional healthcare hub,  offering everything from a birthing centre, dialysis,  surgery, cancer care, MRI diagnostics and outpatient programs, serving the Interlake region.

By James Orlikow

The Centre features an interior contemplation courtyard with a light sculpture, three accessible roof terraces; and a green roof that is overlooked from patient bedrooms. The landscape and building connect seamlessly through an active, south-facing, family/staff courtyard with a sun deck and outdoor ‘kitchen’.

With a focus on having as much natural light as possible in the building, glazed curtain walls are located in all public areas, starting at the front entrance and completely surrounding the contemplation courtyard as a ‘light well’ wayfinding feature.

The colours and finishes of the building echo the water, sky and earth of the Interlake region. Shades of aqua and warm terra cotta balance the golden buff Tyndall stone walls. The first and last impression at every threshold on the site.

Selkirk Regional Health Centre is a replacement facility required due to the premature obsolescence of the existing 1980s hospital. Accordingly, SRHC strives for durability, maintainability, and sustainability within a responsible economic framework. The site configuration, building placement, and orientation responds to the program needs; connectivity to the adjacent health campus; future pedestrian linkages; land drainage requirements; and the horizontal loop geothermal system.

Beyond the functional drivers, SHRC’s strategic planning and design aspirations were ‘access to natural light and outdoor spaces’ for all patients, families and staff.

The SRHC campus transforms 12 hectares of vacant commercial lands, of which more than six hectares  have been converted to naturalized parkland and another hectare to xeroscaped plazas and courtyards. In addition, the building has a 250m2 green roof. 

A network of passive stormwater management features such as dry stream beds, bioswales, and seasonal retention areas work in concert with carefully sited buildings, shelterbelts, and low-mow grassland areas. This forms the framework for all of the other opens spaces on site while managing 100% of the stormwater generated by the new development and creating optimum microclimates that extend public use of the grounds to all seasons.  The development re-establishes the pre-existing aspen forest, tall-grass prairie and wetland ecozones of the Interlake on site.

The constant volume air delivery systems comply with CSA Z317.2 ventilation standard for healthcare facilities. Fresh air rates outlined in the CSA standard ensures indoor air quality to enhance patient recovery and the wellness of occupants. Most regularly occupied spaces are located on the perimeter of the building allowing access to daylight and views.

PROJECT CREDITS

  • Owner/Developer  Interlake-Eastern Regional Health Authority
  • Prime Consultant  LM Architectural Group
  • General Contractor Ellis Don
  • Associate Architect  Stantec Architecture Ltd.
  • Landscape Architect  HTFC Planning & Design
  • Civil Engineer/LEED Advisor  MMM Group WSP
  • Electrical Engineer MCW / AGE Consultants Ltd
  • Mechanical Engineer  SMS Engineering Ltd.
  • Structural Engineer  Crosier, Kilgour & Partners Ltd.
  • Commissioning Agent  Demand Side Energy Consultants
  • Interior Design  Environmental Space Planning
  • Photos  Gerry Kopelow

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) = 361.9KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 54%
  • Water consumption from municipal sources = 1,487 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 43%
  • Recycled material content by value = 23.67%
  • Regional materials (800km radius) by value = 10.95%
  • Construction waste diverted from landfill = 63%

James Orlikow, FRAIC, Principal in Charge of the SRHC Project; Senior Advisor at LM Architectural Group, Winnipeg.

  •  
  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

THE ROTUNDA

High-performance office building rejuvenates downtown neighbourhood

Occupying a prominent downtown corner across from Victoria’s historic City Hall, this mixed-use commercial complex includes two levels of underground parking, a street level with landscaped boulevards and public plazas flanked by ground floor retail spaces. The six-storey, 10,362 m² west building and 13-storey, 16,299 m² east building house class-A office space above.

By Franc D'Ambrosio, Founding Principal, Erica Sangster, Principal, D'AMBROSIO architecture + urbanism and Andy Chong, Managing Principal, INTEGRAL GROUP.

Urban Design and Architecture

The developer’s aim was to contribute to the resurgence of Victoria’s downtown, provide much needed high-quality office space and set a design benchmark in the regeneration of a moribund city block. The building forms have been sculpted to define street edges and create public spaces that are welcoming, human scaled, and integrated with both the street fabric and the building activity.

The fundamental massing strategy was to divide the site laterally and thereby locate two separate and distinct buildings.  As a complex of two buildings, the project is in scale with the surrounding context. The separation has allowed for gracious public open spaces and also facilitated phased construction.  The two buildings share aspects of form and materials, but differ in their massing and façade composition. Both outwardly express their function, with slender office wings and primary circulation routes clearly articulated in concrete and glass.

The public focus of the project is the Rotunda, a 500m² sky-lit atrium that brings natural light into the centre of the west building and also functions as the return air plenum for the ventilation system. To support the 20-metre diameter skylight, a unique structure comprising six ‘boomerang-shaped’ radially arranged, glue-laminated timber members was designed. The members are connected with steel tension rods, as well as concentric steel tension and compression rings – a solution that is economical in material use and maximizes daylight penetration.

Energy

The project’s  Energy Utilization Intensity (EUI) was reduced by high-performance in three main areas: building envelope; ventilation heat recovery; and building heating and cooling.  Building envelope options were optimized using energy modelling, and include a continuous layer of exterior insulation to achieve R-30 in walls. 

Combined with high-performance double-glazing and a strategic window-to-wall ratio, the building enclosure minimizes both heat loss, and cooling requirements due to solar heat gains.

Heating and cooling for the building is driven by a hybrid air/ground-source heat-recovery chiller plant.  This system can operate in either air-source mode (taking advantage of Victoria’s relatively temperate climate), or in ground-source (maintaining compressor efficiency, while using only a modestly-sized borehole field). Radiant ceiling panels provide heating and cooling to all office spaces, using moderate water temperatures and eliminating the need for fans to distribute space heating and cooling.

Ventilation

The larger east building uses underfloor air distribution and displacement ventilation. Dual core heat recovery technology reverses intake and exhaust pathways every 60 seconds, alternately charging large aluminum cores to achieve more than 80% effective heat recovery; much higher than conventional fixed-plate or wheel-type systems.

Variable speed AHU fans and automatic VAV dampers modulate the supply of dedicated ventilation air (no recirculation) in response to CO2 and humidity levels, maintaining indoor air quality and exhausting latent heat gains, while conserving energy for fans, heating, and dehumidification. All systems are controlled by a comprehensive digital Building Automation System.

PROJECT PERFORMANCE

  • Energy Intensity = 102 kWh/m²-yr
  • Thermal Energy Demand Intensity = 22.9 kWh/m²-yr
  • Energy Consumption Reduction vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 45%
  • Energy Cost Savings vs. ASHRAE 90.1-2007 (LEED 2009) Baseline = 33%

PROJECT CREDITS

  • Owner/Developer: Jawl Properties
  • Architect: D’Ambrosio Architecture + Urbanism
  • General Contractor / Construction Manager: Campbell Construction   
  • Energy Model: Integral Group
  • Structural Engineer: RJC Engineers
  • Building Envelope: RDH
  • Landscape Architect: Murdoch & de Greeff
  • Electrical Engineer:  AES
  • Mechanical Engineer  Integral Group
  • Structural Engineer:  RJC Engineers
  • LEED Consultant:  Integral Group
  • Photos: Sama Jim Canzian

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

UBC AQUATIC CENTRE

Advanced sustainable design strategies improve performance in this challenging building type

Completed In 2017, this 8000m² hybrid competition and community aquatic facility replaces an aging indoor and outdoor pool complex, no longer capable of meeting the University of British Columbia’s changing needs. The challenge was to create a facility that would balance the high-performance training requirements of the university successful competitive swim program, with the increased demand for lessons and leisure opportunities from the rapidly expanding residential communities on campus.

By Jim Taggart

The Aquatic Centre is divided north south into four linear program ‘bars’ – lobby and change rooms, community aquatics, competition aquatics, and bleachers. Daylight is used to differentiate between the two aquatic halls. A line of Y-shaped columns supports a continuous six-metre wide skylight that bisects the aquatic hall, delineating competition and leisure areas. A translucent screen creates a luminescent barrier between the two principal spaces, making it possible to control the uses, and have two different activities or events taking place simultaneously.

The architectural composition consists of three distinct elements: a tessellated standing seam metal roof that hovers over an inclined black concrete base, and is separated from it by a continuous ribbon of fritted glazing. The roof rises and falls according to the functional requirements of the spaces below, its slopes and projections providing rain protection, solar shading, and control of daylight penetration as required. The building has become an integral part of the university’s new student hub, adjacent to the bus loop and a few steps from the new student union building.

As a building type, aquatic centres present some major challenges from the sustainability perspective, including water conservation, air quality, energy optimization, light control and acoustic performance.

Water Conservation

Of these, water conservation is the most significant, standard practice being that pools are emptied and the water discarded every time the pool requires maintenance. For the project team, not only did this seem an outdated practice from an environmental point of view, it also seemed incompatible with UBC’s reputation as a leading proponent of sustainable design.

In fact, water conservation has been an important consideration for the UBC Properties Trust for two decades, with new buildings now required to reduce water consumption by 30% relative to the reference standard. This is part of an overall requirement that all new projects are built to LEED Gold standard.

With the university currently conducting research on regenerative neighbourhoods, the project team began looking for ways in which the building could contribute positively to the infrastructure requirements of the community as a whole.

The answer was to create an underground cistern that could not only collect all the pool water during maintenance, but also supply the fire department should the need arise, or accommodate storm surge water for the north campus precinct, so relieving pressure on the existing storm sewer system.

The cistern, which has a capacity of 900,000 litres, is divided into three compartments according to the amount of filtration required prior to reuse. Another of its functions is to collect rainwater from the roof and the adjacent transit plaza, reusing it for toilet flushing, irrigation and poll top up.

  • PROJECT CREDITS
  • Client  UBC Properties Trust
  • Architects   MJMA & Acton Ostry Architects
  • Photos  Shai Gil; Ema Peter

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

Bank of Canada Renewal, Ottawa, ON

Existing Building Upgrade Award | Perkins+Will

Jury comments: This major rehabilitation and revitalization project, driven by quantitative issues of obsolete infrastructure, poor energy performance and related carbon impacts, and an outdated working environment, has been addressed with aesthetic sensitivity and restraint. Innovative structural upgrades enabled the restoration of the integrity of this 1970s office tower by Arthur Erickson,  while the 1930s centre building and its immediate surroundings  have been transformed into valuable new public amenities.

Located just west of Parliament Hill in Downtown Ottawa, the Bank of Canada Head Office complex comprises 79,500m² of offices and operation spaces. The original Centre Building was built in the 1930s; the twin office towers and connecting atrium being added in the 1970s. Completed in 2017, this project included the comprehensive renewal of the existing complex, including some reconfigurations and additions to the program.

A new museum invites and educates the community about the Bank’s role in the Canadian economy. The pyramidal glass entrance pavilion and the enhanced public realm that surrounds it form an abstraction of the Canadian landscape and functions as an accessible, multi-faceted public realm throughout the year.

Major drivers for renewal were the performance and infrastructure deficits of the facility, energy upgrades and carbon reductions, and modernization of the workplace. Within the towers, floor plates and waffle slab ceilings were restored to their original open plan concept.

The renovated towers were designed to be modular, allowing for a diverse range of uses so that each contains a combination of private and collaborative spaces.

The Centre Building accommodates both offices and conference facilities, while the atrium provides a variety of social spaces.

The design looked to maintain as much of the existing building infrastructure as possible, to lower both costs and negative environmental impact. Passive design strategies include revealing floorplates, allowing for deeper daylight penetration and greater access to views to the exterior and atrium.

PROJECT CREDITS

  • Client:  Bank of Canada
  • Architecture/Interior Team: Perkins + Will
  • Civil Engineer: Novatech Engineering Consultants
  • Electrical/Mechanical Engineer: BPA Engineering Consultants
  • Structural Engineer:  Adjeleian Allen Rubeli Limited
  • Project Manager:  CBRE Limited/Project Management Canada
  • General Contractor:  PCL Constructors Canada Inc.
  • Landscape Architect:  DTAH
  • Food Service/Commissioning Agent:  WSP
  • Heritage ConsultantEvoq Architecture
  • Building Envelope:  ZEC Consulting
  • Building ScienceCLEB
  • Sustainability Consulting Team:  Perkins + Will
  • Security:  LEA
  • A/V:  Engineering Harmonics
  • Acoustic:  HGC
  • Cost Consultant:  Turner & Townsend
  • Lighting:  Gabriel MacKinnon/Perkins + Will
  • Code & Life Safety:  Morrison Hershfield
  • Photos:  Younes Bounhar

PROJECT PERFORMANCE

  • Energy intensity = 183 kWh/m² /year
  • Energy savings relative to reference building = 44%
  • Water consumption = 4,645L/occupant/year (based on 250 days operation)
  • Water savings relative to reference building = 35%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.