Dedicated to sustainable,
high performance building

The Dividends of Dissassembly


Reclaiming the value held in buildings

By Brenda Martens

Design for Disassembly and Adaptability (DfD/A) is an approach that facilitates dismantling a product or building at its end-of-use, enabling the recovery of components and materials intact, to facilitate their use in subsequent applications, including complete reassembly. The goal of DfD/A is to keep materials in their highest use for as long as possible.

Historical Highlights

The concept of DfD/A in permanent buildings isn’t new. Indeed, there were industrious (and perhaps morally suspect) parishioners in the 1500’s in Appenzell, a canton in the Swiss Confederacy, constructing homes on their lots, taking advantage of the free lumber from the church-owned forests offered to the congregation for this purpose, then disassembling these houses to sell to others, to be relocated and reassembled on a new site. 

Even earlier, in Japan, techniques for carpentry (Miyadaiku)  allowed for the removal and replacement of the wooden elements of construction. The dismantling, repairing or replacing, and reassembling of the timber parts has resulted in some wooden temples standing for centuries, largely replaced in place.  The Hōryū-ji temple, over 1,300 years old, is the oldest standing wooden structure. After many restorations, only roughly a fifth of the original materials remain. 

Canadian Context

Closer to home and our own time, the C.K. Choi Building at UBC (’96) is a striking early and influential project that demonstrated circular design principles. Under the direction of architects Joanne Perdue and Eva Matsuzaki and structural engineers Diana Klein and Gilbert Raynard, the project aspired to, and succeeded in incorporating salvaged heavy timber from the Armoury Building next door that was slated for demolition.

The Armoury, built in 1941 and used for military training in World War II, was repurposed after the war by UBC for registration, sessional examinations, graduation ceremonies and other assemblies but no longer fit with campus master plans. It provided approximately two thirds of the CK Choi’s structure, but only after the structural engineers had regraded all of the salvaged timber appropriate to its future use, with the knowledge of where it would be used in the new building, overruling the lumber grader’s previous conservative grading.

Brenda Martens, OBC, B.Sc., LEED FellowBCIT faculty and developer of the Applied Circular Economy: Zero Waste Buildings microcredential. with courses on Design for Disassembly, Deconstruction Management and Construction Material Flows.  www.bcit.ca/ZeroWasteBuildings

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Institutional (Small) Award

Bill and Helen Norrie Library – Winnipeg, MB

Jury Comment: “This project clearly articulated the social and cultural focus that has become the primary role of community libraries. Taking visual cues from the Metis village that occupied the site, the building evokes the traditional ‘Big House’. The social, cultural and educational agenda is underpinned by the low embodied carbon and operating energy of the building.”

Located on a busy recreational campus, the 1,300 sq. m library unites the physical energy of the broader site with engaging social spaces to create a home-away-from-home for the community.

Inspired by the Métis heritage and dense residential context of the site, the library is conceived as a ‘big house’, reflecting diverse experiences of home — reading on the porch, playing in the backyard or gathering around the living room fireplace.

The building is strategically oriented on an east-to-west axis on the compact site to maximize daylight

into the library year-round. Positioned to absorb solar heat in the winter and support solar shading in the summer, overhangs minimize glare, direct sunlight and mitigate unwanted heat gain. These strategies reduce energy consumption and costs, and support visitor well-being.

The high performing building envelope, radiant in-floor heating and cooling zones, and a linear, active chilled beam system optimize resource efficiency and support thermal comfort.

Anchoring the approach to the site, a low semicircular bench serves as a resting place while waiting for the bus. Convenient bike storage ties into cycling and walking paths, encouraging active commutes to and from the library and nearby amenities. The modest campus parking lot includes the first EV charging station at a Winnipeg public library.

From the cozy living room and interactive children’s area to the multi-purpose room that accommodates diverse programming, community members of all ages can relax, play and build relationships. Strong visual connections between spaces indoors and out promote awareness of one’s surroundings and contribute to the inclusive family-friendly environment.

Extensive glazing on the north and south facades floods the open, linear library with daylight, creating a bright and uplifting interior setting. Daylight and occupancy sensors maintain consistent lighting levels, while simultaneously reducing the lighting load by at least 50%. All lighting is LED and lighting levels meet IESNA recommendations.

Fresh air is provided by a dedicated 90% efficient, dual core, energy recovery ventilation unit, minimizing long-term maintenance and costs. Demand control, fresh air ventilation is integrated and modulated in conjunction with the zoned VAV boxes to reduce energy use. A minimum MERV 13 Filtration is provided, and fresh air quality meets the requirements of AHSRAE 62-2007.

Project Credits

  • Architect  LM Architectural Group
  • Owner/Developer  City of Winnipeg
  • General contractor  Gateway Construction and Engineering Ltd
  • Landscape Architect  HTFC Planning & Design
  • Civil Engineer  Sision Blackburn Consulting
  • Electrical, Mechanical and Structural Engineer  Tower Engineering Group
  • Commissioning Agent Integrated Designs Inc
  • Sustainability Consultant  Footprint
  • Photos  Lindsay Reid

Project Performance

  • Energy Intensity  180 KWhr/m2/year
  • Reduction in Energy Intensity  44 % (Based on NECB 2011)
  • Water Consumption from municipal source  11,000 litres/occupant/year
  • Reduction in Water Consumption  25%
  • Construction materials diverted from landfill  40%
  • Recycled materials content by value  20%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Interior Design Award

Aedifica Headquarters – Montreal, QC

Jury Comment: “This LEED Platinum certified interior fit out was impressive; addressing multiple quantitative and qualitative criteria including: efficient water and energy consumption, biophilia and diversity of spaces, low-emitting materials, enhanced air quality, occupant comfort and carbon neutral energy. The LCA documentation was comprehensive and the result refined and elegant.“

Ædifica is a multi-disciplinary design practice whose mission is to enrich human lives by creating sustainable, carbon-neutral and inspiring interiors, buildings and urban environments.

The challenges of the COVID-19 pandemic prompted a review of the firm’s culture and how best to deliver its services moving forward. Ædifica decided to relocate to smaller premises and adopt a hybrid work policy which included teleworking and unassigned physical workplaces.

The location in Old Montreal was chosen for the wealth of nearby amenities, easy access by transit and bicycle, and the enduring qualities of the base building. Design ambitions for the project were both qualitative and quantitative:  healthy gourmet lunches served for free by a chef, efficient water and energy consumption, biophilia and a diversity of spaces, low-emitting materials, enhanced air quality, occupant comfort, and carbon neutrality in both energy and materials.

The open concept kitchen is the heart of the project. Employees can gather around and eat at the counter or in the brightly lit agora. This layout promotes interactions between co-workers and develops a sense of community. A happy hour zone has also been integrated into the agora to encourage impromptu festivities and thus strengthen team bonds.

With the wellness of its employees a top priority for the company, the new office includes a variety of spaces to create, work, eat and relax. Numerous plants have been installed through the space to contribute to the psychological well-being of staff.

A monumental shelf filled with vegetation separates the main entrance from the kitchen and shrubs are planted in large concrete pots in the agora. These are complemented by natural materials, such as wood (for flooring and furniture) and terrazzo.

Different spaces are designed to encourage collaboration between colleagues or focused individual work. Open-plan workstations, conference rooms, small offices and telephone booths have been designed to meet all possible needs.

Project Credits

  • Architect  Ædifica
  • Owner/Developer  Ædifica
  • General contractor  Sidcan
  • Electrical Engineer  Ædifica
  • Mechanical engineer  Ædifica
  • Commissioning Agent  Virgile Schwab
  • Photos  David Boyer

Project Performance

  • Energy Intensity  98 KWhr/m2/year
  • Reduction in Energy Intensity  20% (Based on ASHRAE 90.1)
  • Water Consumption from municipal source   2,834 litres/occupant/year
  • Reduction in Water Consumption  51%
  • Construction materials diverted from landfill 62%
  • Recycled materials content by value  10%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Residential (Small) Award

SoLo House, Soo Valley, BC 

Jury Comment:  “This off -grid project provides an object lesson in how to address the imperatives of carbon neutrality, energy self-sufficiency, occupant health and more efficient, low-impact construction materials and methods: in short, how to future proof our built environment. Realized in a remote area, these lessons could nonetheless be applied in urban locations.“

SoLo house is a 380 sq.m, self sufficient, off-grid home with a 40 sq.m ancillary building, sitting lightly on a forested knoll overlooking the spectacular Soo Valley north of Whistler in the Coast Mountains of British Columbia.

Reflecting the client’s expressed intention to ‘Set a new benchmark for environmental performance, health and well-being’, SoLo is not a typical alpine home.

Rather, it is a prototype that demonstrates a unique approach to building off-grid in a remote environment where every choice has consequences. Challenging conventions in both aesthetics and construction, the prototype acts as a testing ground for low-energy systems, healthy materials, prefabricated and modular construction methods, and independent operations intended to inform the approach to larger projects. 

The house includes living space and a master bedroom suite on the main level linked to a sauna and storage space in the adjacent ancillary building. The upper level includes two more bedrooms and two bathrooms.

Given the valley’s extreme climate, it was critical to have an ‘enclosure-first’ approach to ensure energy efficiency and outstanding comfort. A two-layer solution was used for the enclosure with an outer heavy timber frame acting as a shield against the weather, and the heavily insulated inner layer acting as the thermal barrier.

With the goal of eliminating fossil fuels and combustion, SoLo includes a photovoltaic array and a geo-change system, with a hydrogen fuel cell for backup energy storage. To avoid snow build up in winter, the PV array is mounted vertically on the south elevation.  In addition, the house collects and treats its own drinking water and processes its waste water.

Because of the remote location and short construction season, modular building elements were fabricated off-site by a local contractor. This enabled quick erection of the building in the summer season while also minimizing the number of deliveries to the site and the amount of construction waste created.

Project Credits

  • Owner/Developer  Delta Land Developments
  • Architect  Perkins&Will
  • Structural Engineer  Glotman Simpson
  • Mechanical and Electrical Engineer  Integral Group
  • Building Envelope Consultant  RDH Building Science General
  • Contractor  Durfeld Construction
  • Code Consultant  GHL Consultants
  • Photos  Latreille Photography

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.