Dedicated to sustainable,
high performance building


By Colin Rohlfing

According to the August 2021 report from Working Group 1 of the Intergovernmental Panel on Climate Change (WPG-1), ‘it is only possible to avoid warming of 1.5 °C or 2.0 °C with associated catastrophic impacts, if massive and immediate cuts in greenhouse gas (GHG) emissions are made’ before 2030. In short, we have less than eight years to drastically reduce global carbon emissions and avoid the direst impacts of climate change.

As we know, the built environment plays a significant role in climate change — from how projects are constructed, to how they’re used, to how they are disassembled at end of life. For some time now, the design and construction field has implemented increasingly stringent “high performance” design practices to minimize those impacts and there have been progress. Since the implementation of the AIA 2030 Challenge in 2005, the building sector has reduced GHG emissions by 30% even with a nearly 20% increase in floor area. The industry is on target to achieve a 72% reduction by the year 2030. However, these reductions alone are not enough and we must keep pushing towards faster, net positive benefits for a variety of focus areas such as water, ecology, human health and equity.

As a design industry, we must radically transform the way we approach design; to think beyond the immediate boundaries of our projects to EMBRACE broader interconnected social and ecological systems. We must move beyond the equilibrium of sustainability towards design that has net positive benefits. We need to think about our developments not in the context of doing less harm, but actually doing good.

In other words, our projects need to actively regenerate or contribute positive impacts to the people who use them and the local ecology that surrounds them.


The term “Regenerative Design” describes a process that mimics nature itself by restoring or renewing its own sources of energy and materials. At HDR, we view regenerative design as design that reconnects humans and nature through the continuous renewal of evolving socio-ecological systems. It emulates natural systems for the continuous renewal of societal and ecological functions. A Regenerative Design approach embodies six core principles:

1. Regenerative design achieves net-positive impacts for ecology, health and society. A regenerative project establishes performance metrics in these three areas to remediate the harm that has resulted from decades of conventional development. Because it emulates natural ecological systems, regenerative design incorporates leading edge design for wellness and actively participates in unique, place-driven solutions that address issues of social equity.

2. Regenerative design is flexible, and can be applied to all project types and sizes. Regenerative design does not discriminate, nor does it apply only to certain types of projects. HDR has developed a regenerative design framework that has the ability to accommodate design projects of all sizes, typologies and levels of performance.

The framework moves beyond conventional high performance design to pursue “net positive” impacts for carbon, water, nutrients, air, biodiversity, social and health categories.

3. Regenerative design is evidence based, data driven and measured against multiple metrics. Regenerative project goals are established using a pristine reference site as a baseline. Its associated natural performance metrics exceed code and regulatory standards. These metrics are scientifically defensible and are established using Geographical Information System (GIS) maps; together with data from federal and provincial governments; and research conducted by universities and other recognized social and ecological enterprises. Benchmarking /goal setiing Modeling and verification

4. Regenerative design continuously evolves and renews. Regenerative design includes projection modelling of place-appropriate performance indicators in the following categories:

  • air
  • carbon
  • water
  • nutrients
  • biodiversity
  • health
  • social equity and community wellbeing

These indicators will fluctuate and are influenced by short- and long-term disturbances of socio-ecological systems.