Dedicated to sustainable,
high performance building

The drive to decarbonization


The Role of Prefabricated Precast Concrete

By Brian J. Hall and Val Sylaj

Prefabrication, an innovative production method, stands out with its unique features that have the potential to yield significant greenhouse gas (GHG) emission reductions while meeting current and future construction needs. The fundamental differences between factory prefabrication and conventional site construction offer a reduced carbon footprint, and so a promising path towards a more sustainable future.

With traditional construction, the different building materials are delivered from production facilities to the site where the building is constructed from the ground up. In prefabricated construction, building components are fabricated at an off-site facility and installed at the construction site. Moreover, using prefabricated precast concrete products significantly reduces the waste and energy usage typically associated with construction.

This shift from the building assembly stage to the product manufacturing stage not only minimizes the environmental impact but also supports  a more sustainable approach to construction. The benefits of prefabrication are already being seen, and there is potential for further carbon reduction going forward 

Our Progress to Date

Since the publication of our first CPCI industry-average Environmental Product Declarations (EPDs) in 2015, the Canadian precast concrete industry has made significant strides, achieving a remarkable 22% reduction in our A1-A3 (Product Stage) embodied carbon (Figure 1). This reduction underscores our unwavering commitment to sustainability and the potential of prefabricated precast concrete to play a significant part in the decarbonization of the construction industry.

In 2015, ASTM published the first industry average Type III (EPD) for the Canadian precast concrete industry, a significant milestone within the wider construction industry. Since then, the Canadian precast concrete EPDs have been updated twice (in 2019 and 2023) reflecting the more comprehensive emissions data that is now available.

The latest EPDs from 2023 introduced a more detailed regional emissions breakdown than just a national average. Four product categories were reported: architectural precast products, insulated wall panels, structural precast products, and underground precast products.

However, the Architecture, Engineering and Construction (AEC) community must understand the limitations of EPDs and the differences between EPDs and whole life, whole-building life cycle assessment (wbLCA). Most people focus on just the Global Warming Potential (GWP) reported in the EPDs, but what does this number mean? Can you compare two different building materials’ EPDs and make your choice based solely on the lowest GWP?

EPDs are intended to be used as reference input data for consultants conducting a wbLCA, which includes all the life cycle stages identified in European Standard EN 15804, the most popular global standard for producing EPDs for construction products.

For a full ‘Cradle to Cradle’ life cycle assessment, the stages are (Figure 2):

  • Modules A1-A3 Product Stage
  • Modules A4, A5 Construction Stage
  • Modules B1–B7 Use Stage
  • Modules C1–C4 End of Life Stage
  • Module D Net Benefits and Loads   

Brian J Hall, B. B. A., MBA, FCPCI, MRAIC. Managing Director, Canadian Precast/Prestressed Concrete Institute.

Val Sylaj, P.Eng., Ph.D.  President/Director of Technical Services, Canadian Precast/Prestressed Concrete Institute.

  • SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Prefabrication and Modular Construction

The thermal performance of off-site prefabricated buildings and building enclosure systems

By Val Sylaj and Brian J Hall

As designers and owners are becoming more aware of the environmental impacts of the construction industry, including the types of materials used, more stringent requirements are being imposed by specifiers, and national codes and standards.   

This article provides some insights on the important measures of prefabrication and panelized systems on the thermal performance of buildings, the energy consumption, and the financial impacts to the investors.

A recent report from Dodge Data and Analytics published in 2020 shows a significant interest by the construction industry in prefabrication and modular construction mainly because of the improved productivity, reduced timeline, and cost, better sustainability performance, etc. 

https://www.construction.com/toolkit/reports/prefabrication-modular-construction-2020

An earlier report from Dodge Data and Analytics published in 2011 had also highlighted the following as the underlying drivers and benefits of prefabrication and modular construction: (1) Improved productivity and quality are key benefits in its usage, (2) Positive impacts on budget and schedule performance are widely experienced, and (3) Construction sites are ‘greener’ due to less waste being generated, and safer due to working with structure assemblies and modules produced offsite. 

Although major advances have been made in both prefabrication and modular construction since the 2011 report, many of the above mentioned factors are still consistent with the findings of the latest report from 2020. 

What is Prefabrication and Modular Construction?

With rapid population growth, the construction industry is always challenged to adapt its technologies based on the market demand such as the need for taller buildings, reduced onsite construction times, enhanced building performance, etc. Prefabrication and modular construction are certainly a solution to most, if not all, of these demands. 

Prefabrication is a construction method that involves fabricating and assembling building components offsite. It can refer to both flat elements (often known as prefabricated panelized systems), or to modular volumetric units that typically include complete spaces of a building such as an apartment unit, hotel room, jail cell, etc. In either case, prefabrication construction also provides innovative solutions in buildings where the entire building envelope can be fabricated offsite using prefabricated building components.

In addition to the need for accelerated building construction technology and consistency in quality, prefabrication and modular construction are also being considered to address concerns with site-specific skilled labour shortages. With prefabrication that is completely performed at an offsite facility, plant workers can be trained to perform specific skilled trades such as electrical and plumbing that form part of the finished element or room. 

Standard building construction practices require individual building components or materials to be delivered to a job site, stored and then placed or installed by labourers from multiple trades. This requires significant on-site space as well as time for setup and construction. Another very time-consuming on-site operation process is the exterior finish of the final building façade.                                                               

Conversely, off-site prefabricated components are delivered ‘just-in-time’ and installed by a smaller crew of skilled installers/erectors, directly from the truck onto the building, with the façade and architectural finishes already complete.    

It is clear that prefabrication is an ideal construction technology with minimal site disturbance and less labour required compared to traditional construction. Another important factor is improved safety, mainly because the work is done at ground level at a prefabrication facility, instead of working at elevated heights which is common with traditional construction. Further, the safety measures such as physical distancing during a pandemic can be easily implemented with very minimal or no effect on production.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.