Dedicated to sustainable,
high performance building

Evolv1, Waterloo, ON

Commercial/Industrial [Large] Award | Stantec

Evolv1 is a commercial office building targeting net positive energy and net zero carbon. In order to achieve this standard, the building must produce 105% of its own energy requirements. The 10,000m2, Class AAA building is located in the David Johnston Research + Technology Park, within Waterloo’s Idea Quarter.’ The goal of the project was to inspire development of regenerative buildings by producing an economically-viable prototype that works within the real market. The building is targeting LEED platinum certification and has been certified by the Canada Green Building Council as the first Zero Carbon Building in Canada.

A multipronged low energy design approach was used to meet the client’s environmental goals, including a ground source open loop geo-exchange system, that significantly reduces the heating and cooling loads, and photovoltaic panels installed by VCT Group to produce more energy than the building was going to consume.

The team used an Integrated Design Process (IDP), taking advantage of collaboration between different disciplines, considering the advantages and trade-offs between performance, user comfort and costs from an early stage.

The design team knew what was achievable technically, but had to find ways to make it feasible in the marketplace in order to ensure widespread impact. The team used a proprietary parametric modelling tool that enabled them to analyze thousands of design scenarios simultaneously.

The choice of site was also important; being on the University of Waterloo campus and thus able to leverage the university’s culture of innovation and attract young, tech-savvy tenants. Proximity to the new LRT station was also an advantage. 

PROJECT PERFORMANCE

  • Energy intensity (base building) = 44.5KWhr/m²/year
  • Energy intensity (process) = 33.5 KWhr/m²/year
  • Energy intensity reduction relative to reference building under ASHRAE 90.1 2007 = 105%
  • Water consumption from municipal sources = 1,748 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 69%
  • Recycled material content by value = 28%
  • Regional materials (800km radius) by value = 49%
  • Construction waste diverted from landfill = 82.5%

PROJECT CREDITS

  • Client:  Cora Group
  • Architect/Landscape Architect:  Stantec Architecture Ltd.
  • Civil/Elec/Mech/Structural Engineer: Stantec Consulting Ltd.
  • General Contractor  Melloul-Blamey
  • Commissioning Agent  CFMS West Consulting Inc
  • Photos  Jesse Milns

A large PV array installed by VCT Group on the roof and in the parking lot helps the building to produce 105% of its own energy requirements.

Part of the cladding is slat wall panels made of öko skin from Sound Solutions and consists of glassfibre reinforced concrete that can be mounted horizontally or vertically on a substructure in a rainscreen system.

The geo-exchange system: Water, at a fairly constant at 10°C, is taken from the aquifer 160m below ground, filtered, and sent to a heat exchanger to provide heating and cooling to the building all year round.

Passive strategies were used to reduce energy consumption, followed by active strategies and efficient equipment such as Mitsubishi Electric AC units and fan coils

Sechelt Water Resource Centre, Sechelt, BC

Commercial/Industrial [Small] Award   |  Public Architecture + Communication

Jury comments: We hope this project marks the beginning of a new era in which the invisible infrastructure that has long-supported urban life is brought out into the daylight. Only through making infrastructure visible can we fully grasp and understand the implications of our linear systems of production, consumption, treatment and disposal. Alongside the learning opportunities provided by this facility, the volume of waste discharged into the ocean has been reduced by 90% compared to its predecessor and the bio-nutrient by-products can be used for industry and agriculture.

The Sechelt Water Resource Centre (SWRC) rethinks traditional municipal wastewater treatment. Instead of sequestering this essential service behind a locked chain-link fence, the transparent suburban facility reveals the mechanical and biological systems that clean wastewater, replacing the traditional ‘flush and forget about it’ systems with one that encourages the public to consider their role in the hydrological cycle.

In comparison to the facility it replaced, the SWRC discharges ten times fewer waste solids into the sea, boasts double the treatment capacity and nearly half the operational costs; and, captures resources (biosolids, heat, and water) for industry, parks, and agriculture. A sewage treatment plant, botanical garden and teaching facility in turn, the centre also provides a more humane work environment where employee duties include harvesting tomatoes and pruning roses.

Wastewater is treated and reused at its source instead of being pumped back and forth from an energy intensive pipe network, effectively closing the water loop. The SWRC replaces an existing packaged extended aeration plant with the first North American installation of the Organica Fed Batch Reactor System.

This system is set apart by the inclusion of microorganisms, which live among the roots of plants grown in a greenhouse above the reactors. The plant roots create a complex environment which fosters a biologically diverse community of insects and bacteria that consume the organic matter.

What is remarkable about this system is the elimination of noise pollution and odours associated with conventional treatment as well as its reduced footprint. The entire process is housed in a single building, which integrates with the surrounding neighbourhood and nearby Sechelt Marsh Park.

PROJECT CREDITS

  • Owner/Developer: District Municipality of Sechelt
  • Architect:  Public Architecture + Communication
  • General Contractor:  Maple Reinders Group Inc.
  • Landscape Architect: Urban Systems
  • Civil Engineer:  Urban Systems
  • Electrical Engineer:  IITS Ltd.
  • Mechanical Engineer:  HPF engineering Ltd.
  • Structural Engineer:  CWMM Consulting Engineers Ltd.
  • Commissioning Agent:  CES Group 
  • Photos:  Martin Tessler

PROJECT PERFORMANE

  • Energy intensity (process) = 584 KWhr/m²/year
  • Energy intensity reduction relative to reference building under ASHRAE 90.1 2007 = 22%
  • Water consumption from municipal sources = 12,597 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 69%
  • Recycled material content by value = 17%
  • Regional materials (800km radius) by value = 26%
  • Construction waste diverted from landfill = 96%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Okanagan College Trades Renewal and Expansion Project – Kelowna, BC

Institutional [Large] Award  |  Diamond Schmitt Architects  

The primary objective of the Okanagan College Trades Renewal and Expansion project was to enlarge and unify disparate elements of the Trades training program on the Kelowna, BC campus and to provide an exemplar of highly sustainable building design for students and future generations of trades workers.

The project comprises two distinct but integrated components: the renovation of 4,180 m² of existing trades workshops and the construction of a 5,574 m² addition. The three-storey addition frames a new courtyard, preserves a mature copper beech tree and positions the Trades Complex much closer to the main road, creating a new public face for the college.

The new building accommodates classrooms, group offices, labs, trade shops, a café, as well as student social and study space for the campus as a whole. The ambitious sustainable design targets were a driving force for the project. They include achieving Living Building Challenge petal certification including Net Zero Energy, LEED Platinum for the new addition, and LEED Gold for Existing Buildings Certification (LEED EB:O&M) for the renovation.

The application of bioclimatic design principles was critical to achieving the ambitious energy targets. These principles informed the orientation, footprint and massing of the building and maximized the potential for capturing solar energy and minimizing the need for conventional mechanical and electrical systems.

PROJECT PERFORMANCE

  • Energy intensity (base building) = 17.7KWhr/m²/year
  • Energy intensity (process) = 19.3KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB = 51%
  • Water consumption from municipal sources = 2,935litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 35%
  • Recycled material content by value = 25%
  • Regional materials (800km radius) by value = 32%
  • Construction waste diverted from landfill = 81%

PROJECT CREDITS

  • Client  Okanagan College
  • Architect  Diamond Schmitt Architects
  • Associate Architect  David Nairne + Associates
  • Civil Engineer  True Consulting
  • Electrical Engineer  Applied Engineering Solutions
  • Mechanical Engineer  AME Group
  • Structural Engineer  Fast+Epp
  • Commissioning Agent  I Design
  • Sustainability  Integral Group
  • Envelope Consultants  RJC Engineers
  • General Contractor  PCL Constructors Westcoast Inc
  • Landscape Architect  Phillips Farevaag Smallenberg
  • Building Code  LMDG Consultants
  • Cost Consultant  Quantity Surveyors Ltd.
  • Photos  Ed White Photographics

Exterior sunshades were provided by McGill Architectural Products.

The south main entry. Steel cladding 7/8-in. corrugated profile supplied by Vicwest.

The central three-storey atrium brings daylight into the core and assists with natural ventilation. Alumicor supplied the operable windows 5000 Series Phantom Vents, 2300 Series skylights, and 2600 Series curtain walls.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Building Blocks on Balmoral at Great West Life – Winnipeg, MB

Institutional [Small] Award | Prairie Architects Inc.

Jury comments: This project comprehensively and creatively addresses multiple aspects of sustainability simultaneously. The adaptive re-use of a heritage house as the centrepiece of a new and much needed daycare facility not only achieves LEED Platinum environmental performance, but also acts as a powerful catalyst in the revitalization of the fabric of Winnipeg’s West Broadway neighbourhood through the addition of this community amenity.

Building Blocks on Balmoral at Great-West Life comprises  the adaptive re-use of the 110-year old Grade II listed Milner House and two new structures, which together provide 100 licensed childcare spots to Great-West Life employees and the West Broadway community.

In addition to upgrading and extending the useful life of a heritage structure, the new facility has achieved LEED Platinum certification with the integration of sustainable features that include: a geothermal ground source heat-pump with in-floor radiant heating and chilled beams for cooling; displacement ventilation that requires lower fan power than ducted systems; significant use of salvaged, refurbished and re-used materials; substantial water use reduction (a particular priority in the Prairies); abundant daylight and views and use of low-emitting materials.

In order to create a sense of “home” for children, the facility was deliberately divided into two smaller additions on either side of the existing Milner House: one for toddlers and infants and one for preschool aged children. Each addition has direct connection to accessible exterior play yards, designed with naturalized landscapes and an age-appropriate focus.

The need to replace the deteriorating foundation of the Milner House provided an opportunity to make the ground floor of the facility fully accessible.

In order to keep the entire main floor on one level without introducing ramps and stairs, the original structure was lowered approximately 610mm onto a new foundation, and the north end of the site was built up 1,220mm to provide an accessible outdoor play area  for the children.

This also enabled the implementation of two site planning moves that facilitate on-site stormwater management: the elimination of an impervious lane connecting Balmoral Street to the Great- West Life parking lot; and the creation of a retention area for stormwater run-off at the north end of the site.

With a particular concern for indoor environmental quality, the project has been designed with 100% fresh air displacement ventilation. The system, which introduces low velocity fresh air at low level, was selected not only because of the significant energy savings it offered, but also because it was the most effective way to deliver fresh air close to the floor in spaces occupied by small children and crawling infants.

PROJECT CREDITS

  • Owner/Developer:  Great West Life Assurance Company
  • Architect:  Prairie Architects Inc.
  • General Contractor:  Manshield Construction
  • Landscape Architect:  Nadi Design & Development Inc.
  • Civil Engineer:  WSP
  • Electrical/ Mechanical Engineer:  KGS Group 
  • Structural Engineer:  Wolfrom Engineering Ltd.
  • Commissioning Agent:  Pinchin
  • Energy Modelling:  Stantec
  • Photos: Lindsay Reid

PROJECT PERFORMANCE

  • Energy intensity (building and process energy) =  145.5KWhr/m²/year
  • Energy intensity reduction relative to reference building under MNECB 1997 = 56%
  • Water consumption from municipal sources = 2,993 litres/occupant/year
  • Reduction in water consumption relative to reference building under LEED = 50%
  • Recycled material content by value = 14%
  • Regional materials (800km radius) by value = 36%
  • Construction waste diverted from landfill = 89.5%
  • The chilled beam around the perimeter. Daikin contributed fan coils and its Enfinity water-source heat pumps to the HVAC system. Each of the four new buildings use an Uponor manifold and in-floor radiant system to provide  even heating across the floors. 
  • The project uses an ERV system by Winnipeg-based Tempeff North America. The Dual-Core technology recovers both heat and humidity in winter allowing for continuous fresh air supply and a frost-free operation in extremely cold conditions. This ERV simplifies system design and does not require preheat or any form of defrost strategy.
  • East-facing childcare space where large windows admit natural light. DUXTON Windows & Doors supplied the fiberglass fenestration, in FiberWall™ Series 328 and 458, high performance triple glazing. The windows came complete with a 350 Panning exterior extension, providing a seamless, prefinished flashing detail for easy installation.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.