Dedicated to sustainable,
high performance building

Mixed Use Award – CHEKO’NIEN HOUSE  University of Victoria, BC

Jury Comment: “This project is notable for its richly mixed program; including student housing, academic areas and food services. Innovative and progressive, it makes a positive contribution to social life on the urban campus. Selective use of large windows and exposed wood in areas where people gather reinforce their connection to nature.”

Čeqwəŋín ʔéʔləŋ (Cheko’nien House), the first of two buildings in the Student Housing and Dining project at the University of Victoria (UVic), embodies a transformative approach to student living and community engagement. Its unique design emphasizes social connectivity and sustainability.

The first two storeys house a 600-seat dining hall, a multi-purpose room for 200, a servery, and a commercial kitchen, fostering vibrant community interaction. Above, the 398-bedroom student residence offers modern living spaces tailored to promote student well-being and academic success.

Driven by a steadfast commitment to climate action, Cheko’nien House meets rigorous sustainability standards, including BC Energy Step Code Step 4 and LEED v4 Gold certification, and is on track for Passive House certification. This dedication not only reduces campus-wide CO2 emissions, but also enhances the health and comfort of its residents.

Propelled to preserve greenspace while meeting the growing demand for on-campus housing, the building has a compact footprint and much greater height than any other building on campus. Strategically positioned to catalyze the new Campus Greenway strategy, the building massing shelters the pedestrian realm from rain and shades its transparent ground floor from sun. Other passive design strategies—including fixed sunshades and optimized fenestration—balance daylight, heating, and cooling. Complemented by energy-efficient HVAC and lighting systems, these strategies ensure optimal performance while minimizing energy inputs and carbon emissions.

Working with local Indigenous communities, the design team explored opportunities to recognize and preserve the inherited spirit of place and connect students to Indigenous histories and cultures. A swath of concrete is transformed into a stormwater detention feature, serving the project site and beyond. Trees removed were replaced at a ratio of 3:1, following a planting plan developed through research into native species and consultation with Elders.

Project Credits

  • Owner/Developer  University of Victoria
  • Architect  Perkins&Will
  • General Contractor  EllisDon-Kinetic, A Joint Venture
  • Civil and Electrical Engineer  WSP Canada
  • Mechanical Engineer  Introba
  • Structural Engineer  Fast + Epp
  • Landscape Architect  Hapa Collaborative
  • Commissioning Consultant  WSP Canada
  • Photos  Michael Elkan

Cascadia Windows & Doors supplied the fixed and operable fibreglass windows from its Universal PH Series.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Residential (Large) Award

SFU Affordable Housing, Burnaby, BC

Jury Comment: “Providing much needed affordable accommodation for previously under-served sectors of the student population, this project is notable for its strong community focus, the multiple opportunities it creates for interaction between residents, and its strong connection with nature. Attention to detail and comprehensive data supported impressive energy performance.”

Simon Fraser University (SFU) Affordable Housing is a high-performance, community-oriented housing project that strives to promote connection—people to one another, students to university, residents to neighbourhood, and everyone to nature.

Located near a daycare and elementary school in the UniverCity neighbourhood at SFU’s Burnaby campus, the project provides 90 below-market student rental apartments that prioritize underserved communities with accessible, adaptable, and family-oriented housing—demographics with modest incomes and limited access to transportation, amenities, and community support.

Consisting of two wood-frame buildings of four and six storeys on top of a single-storey parkade, the residences are supported by a blend of amenities to cultivate community connections including a courtyard and playground, multipurpose pavilion, shared laundries and study rooms, and a bicycle workshop to support active transportation.

Utilizing simple massing with a high-performance envelope and rigorous attention to detailing along with PHPP and THERM modelling, the project surpassed Step 4 of the BC Energy Step Code and was recognized as a Clean Net-Zero Energy Ready award winner. Completed in 2022 on a conventional wood-frame construction budget, the project continues to be leveraged as a case study for local industry and academia in the design and construction of high-performance buildings.

The project started with a complex site and client challenge to deliver Passive House performance on a conventional construction budget while prioritizing community and occupant well-being. Certification was an initial goal, but was relatively new to the market when the project was initiated in 2014, leading to disproportionately large cost premiums and constraints.

Project Credits

  • Architect  Local Practice Architecture + Design
  • Project Manager  JLL
  • Owner/Developer  SFU Community Trust
  • General Contractor  Peak Construction Group
  • Landscape Architect  space2place
  • Civil Engineer  H.Y. Engineering
  • Electrical Engineer and Structural Engineer Associated Engineering
  • Mechanical Engineer  Rocky Point Engineering
  • Fire Protection  Mfpe Engineering
  • Building Envelope  RDH Buiding Science
  • Energy Model  Tandem Architecture Écologique
  • Building Code  Jensen Hughes
  • Cost & Constructability  Heatherbrae Builders
  • Photos  Latreille Photography

Project Performance

  • Energy Intensity  49.82 KWhr/m2/year
  • Reduction in Energy Intensity  62% (Based on BCBC – 2012 Energy Step Code Level 2*)
  • Water Consumption from municipal source  67,262 litres/occupant/year
  • Reduction in Water Consumption  11%
  • Construction materials diverted from landfill  66%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Residential (Small) Award

SoLo House, Soo Valley, BC 

Jury Comment:  “This off -grid project provides an object lesson in how to address the imperatives of carbon neutrality, energy self-sufficiency, occupant health and more efficient, low-impact construction materials and methods: in short, how to future proof our built environment. Realized in a remote area, these lessons could nonetheless be applied in urban locations.“

SoLo house is a 380 sq.m, self sufficient, off-grid home with a 40 sq.m ancillary building, sitting lightly on a forested knoll overlooking the spectacular Soo Valley north of Whistler in the Coast Mountains of British Columbia.

Reflecting the client’s expressed intention to ‘Set a new benchmark for environmental performance, health and well-being’, SoLo is not a typical alpine home.

Rather, it is a prototype that demonstrates a unique approach to building off-grid in a remote environment where every choice has consequences. Challenging conventions in both aesthetics and construction, the prototype acts as a testing ground for low-energy systems, healthy materials, prefabricated and modular construction methods, and independent operations intended to inform the approach to larger projects. 

The house includes living space and a master bedroom suite on the main level linked to a sauna and storage space in the adjacent ancillary building. The upper level includes two more bedrooms and two bathrooms.

Given the valley’s extreme climate, it was critical to have an ‘enclosure-first’ approach to ensure energy efficiency and outstanding comfort. A two-layer solution was used for the enclosure with an outer heavy timber frame acting as a shield against the weather, and the heavily insulated inner layer acting as the thermal barrier.

With the goal of eliminating fossil fuels and combustion, SoLo includes a photovoltaic array and a geo-change system, with a hydrogen fuel cell for backup energy storage. To avoid snow build up in winter, the PV array is mounted vertically on the south elevation.  In addition, the house collects and treats its own drinking water and processes its waste water.

Because of the remote location and short construction season, modular building elements were fabricated off-site by a local contractor. This enabled quick erection of the building in the summer season while also minimizing the number of deliveries to the site and the amount of construction waste created.

Project Credits

  • Owner/Developer  Delta Land Developments
  • Architect  Perkins&Will
  • Structural Engineer  Glotman Simpson
  • Mechanical and Electrical Engineer  Integral Group
  • Building Envelope Consultant  RDH Building Science General
  • Contractor  Durfeld Construction
  • Code Consultant  GHL Consultants
  • Photos  Latreille Photography

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.