New (Temporary) Home of the House of Commons

Hidden solution controls a glaring problem

Any long-term renovation project comes with issues, and the recent conversion of the West Block courtyard in Ottawa to the new home of the House of Commons for the next 10 years, is no exception. In this case, a hidden solution was found to one of the most glaring problems.

By Terry Coffey

To convert the exterior courtyard to an indoor space, architects AFGM designed a multilayer roof structure comprising a supporting steel structure, outer glazing, an access catwalk, and an inner laylight. This plan would create an impressive space, full of light.

Impressive but problematic.

As the proceedings of the House of Commons are televised, control of light through the roof structure is critical to prevent glare. Draper, a U.S.-based manufacturer of custom solar control solutions, was tasked to provide a way to maximize the diffuse daylight in the space without permitting direct sunlight to strike any part of the debating chamber at any time during the day.

Given the complex geometry of the roof and the need to block direct sunlight, it wasn’t possible to use an “off the shelf” solution. As a result, Draper worked closely with facade engineers, Front Inc.; climate engineers, Transsolar Inc; and skylight contractor, Seele; to develop a custom motorized louver system.

There were three big challenges to address:

  • Motorized louvers rarely rotate more than 90°, but this project required a drive mechanism that could rotate the louvers through 180°, allowing them to track the sun continuously throughout the day.
  • The louver system needed to cope with the irregular shaped skylight elements.
  • The system needed to allow adjustment to run on a number of different slopes.

The final design comprises a drive bar with sections of rack mounted at each louver location. These racks engage toothed wheels mounted on the louver shafts. Consequently, as the actuator drives forward and back, the louvers are rotated.

The louvers slowly rotate 180° every day during daylight hours, then retract to their original position overnight. Adjusting the actuator stroke allows the amount of louver rotation to be increased or decreased as required.

Using 3-D printers, prototypes of components were produced to check their integration with the structure.  Due to the precision required, two mock-up systems were built and reviewed by the design team and modifications made to address issues that were highlighted. Noise measurements resulted in the original actuator being replaced by one which achieved significantly quieter operation.

Terry Coffey, ISF is with Draper, Inc.; www.draperinc.com. Drawings and photos supplied by Draper, Inc., unless otherwise noted.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

PROJECT NEXTUS

Architectural firm’s own office demonstrates sustainability on a smaller scale

Located in Saskatoon, one of the  youngest and fastest growing cities  in Canada, our new workplace had  to embody a fresh identity and a  progressive environmental agenda.

By Bertrand Bartake

In a province where sustainable design is not yet the norm, we wanted to lead by example. Project Nextus is in line to become the first LEED Platinum certified project in Saskatchewan. Located in a main floor storefront space, it puts active design principles on public display.

We established ambitious sustainability goals with an emphasis on staff health and comfort. We met those goals by planning and intelligent design first, and then by including technology if necessary. It was important for us to create an environment of choice for staff while inspiring creativity.

One of the main elements of the design solution is a locally fabricated parametric perforated steel ribbon that acts as a wayfinding element and connects the two levels of the workplace by framing the central circulation. The ribbon acts as an acoustic absorber and screens the main mechanical distribution before morphing into a magnetic and writable surface for the meeting areas. The collective efforts toward smart planning, functionality and ingenuity resulted in a workplace that is a manifestation of our core principles of context, collaboration and sustainability.

Large north-facing windows on the storefront provide abundant daylighting to the front of house spaces without the detrimental effects of glare. On the south side, a deep overhang enabled the design team to expand the area of glazing originally proposed for the base building, greatly increasing the daylight reaching the space. The use of 100% LED fixtures resulted in a power density improvement of more than 35% over the ASHRAE benchmark. Occupancy sensors throughout, including on task lights, further reduce the power consumption within the space.

Materials, finishes and furnishings were meticulously selected to reduce harmful airborne contaminants in the office. Over 30% of the furniture is reused. Radiant heating and cooling panels are combined with a dedicated outdoor air delivery system that provides 100% fresh air to the workplace. The collective strategies resulted in outstanding air quality in the project.

Active design principles played a key role in generating the layout of the workplace, with the social and amenity spaces in the centre and studio spaces around the periphery. The kitchen, print area and “living room” act as social condensers where staff working in different studios interact. A generously proportioned, open stair provides both vertical connection and an informal meeting place.

Bertrand Bartake, Architect SAA, is with Kindrachuk Agrey Architecture in Saskatoon.

The base building uses Alumicor ThermaWall 2600 curtain wall, FlushGlaze 800 storefront and RainBlade 1970 triple-glazed low E windows, and is designed to achieve LEED Gold certification.

Energy-efficient and quiet-operating fan coils by Daikin are used in the meeting rooms. 

PROJECT CREDITS

  • Client/Architect  Kindrachuk Agrey Architecture
  • Structural Engineer  Robb Kullman Eng. Ltd.
  • Electrical Engineer  PWA Engineering Ltd.
  • Mechanical Engineer  Daniels Wingerak Engineering Ltd.
  • General Contractor  PCL
  • Commissioning Agent  Thurston Engineering
  • LEED Consultant Kane Consulting
  • Photos  Patricia Holdsworth, Karee Davidson

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Sustainable Energy and Engineering Building

Insulated precast concrete façade contributes to energy savings in landmark building

Simon Fraser University’s new, five-storey Sustainable Energy and Engineering Building (SE3P) in Surrey, BC represents the University’s first major step in expanding beyond its Central City campus to become a distinct academic precinct within Surrey’s growing and revitalized City Centre neighbourhood.

By: Venelin Kokalov

Funded in part by the Federal Government’s Post-Secondary Institutions Strategic Investment Fund (SIF), this distinctive 16,000 square metre (173,000 square feet, excluding single-level underground parkade) facility is purpose-built to house the new Sustainable Energy and Engineering (SEE) program which offers an integrated, multi-disciplinary approach to energy engineering education to support the clean tech, renewable and sustainable energy sector.

With a building program organized around a light-filled central atrium and sweeping staircase punctuated with trees at varying levels, SE3P comprises teaching and research labs; collaboration and study spaces; faculty, graduate and administrative offices; recreational rooms; undergraduate and graduate lounges, student services, and plant maintenance facilities. When fully operational, approximately 515 students and 60 faculty and staff will use the building. Its 400-seat lecture hall, situated on the southwestern portion of the ground floor, will serve the full SFU Surrey campus as well as the broader Surrey community.

The project’s fast-track delivery method necessitated a significant overlap in the design and construction phases. Utilizing prefabricated precast concrete elements for the façade became a key consideration, not only for ensuring long-term durability and reduced maintenance, but because it also enabled the building to be closed in quickly to meet the tight construction schedule.

As a result, SE3P’s compelling architectural expression is a unique façade composed primarily of framed alternating strips of energy-efficient, undulating precast concrete double wythe insulated panels and reflective glazing. Drawing inspiration from the geometric pattern of electrical circuit boards, the precast concrete panels also symbolize the technological subject matter that will be taught within the building.

By fabricating the exterior finish, thermal and moisture protection, and interior finish off-site as a single pre-assembled system, the project’s schedule, performance and energy-saving goals were maintained while mitigating on-site construction noise and debris. The heavier precast concrete elements with reflective glazing help to animate the façade and are juxtaposed with the transparent glazing at the building’s ground plane which extends the outdoor public realm into the interior public space, engaging the local community.

Venelin Kokalov is Design Principal at Revery Architecture Inc.

PROJECT CREDITS

  • Owner Simon Fraser University (SFU)
  • Architect  Revery Architecture Inc.
  • Structural Engineer  WSP
  • Mechanical Engineer  The AME Consulting Group Ltd. (AME Group)
  • Electrical Engineer  AES Engineering Ltd. (AES)
  • Building envelope  Morrison Hershfield Ltd.
  • Precast Concrete Engineer  Kassian Dyck & Associates
  • Contractor  Bird Construction
  • Precast Concrete Supplier and Installation SureClad a subsidiary of Surespan Structures, a member of the Surespan Group
  • Photos  Courtesy of Revery Architecture. Construction photos by Surespan Construction Ltd.

Variable air volume (VAV) units, diffusers, registers and grilles were provided by E.H. Price (Price Industries). Other HVAC equipment, namely split air conditioning units, fan coil units, and chillers were provided by Daikin.

The building uses CES light sensors, manufactured by PLC Multipoint, Inc. of Everett, Washington.  The sensors measure the amount of daylight in each space so that the building’s Energy Management System can minimize the use of artificial lighting, saving energy and money while creating optimal work environments. 

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Resilience planning for communities to thrive in an unpredictable and changing world

Across Canada, we are witnessing tremendous change, not only in our climate, but also in the urbanization of our cities. As our cities grow, we are experiencing greater pressures on our housing stock and community-wide infrastructure. In an often unpredictable and changing world, resilient design and planning is needed for our cities and communities to endure and thrive in both the short and long-term.

By: Kathy Wardle and Viren Kallianpur

While we must be aware of potential short and long-term shocks and threats facing our communities, as design professionals we have both a responsibility and an opportunity to implement solutions that offer hope to Canadians. This article offers a perspective on resilient design: the guiding principles, best practices, and tools that are available to practitioners today.

There is both commonality and differences in the various Canadian cities in terms of their stressors and threats. With four out of five people in Canada living in cities, the resulting higher density and population in urban areas mean that cities are both agents for climate impacts and solutions.

Growing population through migration and immigration, the rising demand for transportation, and the growing need for infrastructure to provide safety, comfort, and security all combine to create different pressures on our cities.

The global nature of the world we live in also means that stressors and threats faced by other nations have either a direct or an indirect impact on our cities. While global in nature, these impacts need to be resolved at the local level through political will, technical expertise, and individual commitment and responsibility. The effort to find solutions to these issues or problems lie in a more collaborative and collective approach through leadership, community engagement, and collective action.

While climate change is one of the most important drivers for discussions regarding resilience, the conversations should not be limited to climate change; resilience needs to be looked through social, economic, and environmental lenses to identify risks—natural and manmade, acute and chronic—and respond through design and operations planning. Resilience needs to be addressed at multiple levels from a single building, to a district, city and regional level. Policies, strategies, and initiatives at each scale influence the resilience and performance at other scales.

Kathy Wardle, LEED BD+C RELi AP, is Associate Principal, Director of Sustainability, and Viren Kallianpur, AICP, LEED AP BD+C, RELi AP, is Associate, Urban Design Practice, both of Perkins+Will in Vancouver.

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

BANK OF CANADA RENEWAL

With a total floor area of approximately 79,000m², the Bank of Canada complex occupies an entire city block in Ottawa’s central Parliamentary District. The complex consists of the Classical grey granite Centre Building, designed by Morani, Lawson and Morris and opened in 1938, flanked by two modern glass towers and indoor atrium designed by Arthur Erickson and completed in 1979.

By Jim Taggart

Design Intent

The renewal project was designed to maintain the major architectural components of these historically significant structures, while bringing the facility up to 21st century standards for accessibility, fire and life safety, security and seismic performance. In addition, the interior reconfiguration responds to the client’s desire to reinvigorate its operations by fostering a collaborative workplace culture. Moving away from private workspaces to an open environment, the Interior modifications consciously drive a future thinking workplace that will appeal to the brightest and best of the emerging young workforce.

Physical Renewal

The major physical components of the project included complete interior demolition and fit-up of new office space, new structural concrete shear walls and floor slab infills and new staircase configurations. These changes were strategic in nature, designed to meet the functional criteria in the most unobtrusive way possible.

For example, the careful demolition and replacement of the existing elevator and fire stair core in the office towers with new seismically upgraded versions eliminated the need for the more common, but more visually intrusive strategy of storey height steel cross-bracing installed behind the existing glass curtain wall. The perimeter of each tower floor thus became available for the creation of a 450mm deep ‘dynamic buffer zone’ to improve energy efficiency and environmental control.

With the installation of an interior wall of glass, this zone forms the plenum of a double envelope system that improves thermal performance and permits the pre-conditioning of air before it is distributed through the building. While a conventional suspended ceiling might have achieved the same effect, it would have concealed Erickson’s original exposed concrete structure.

The perimeter buffer zone, combined with a new open plan office configuration, meant that a labyrinth of ductwork could be avoided and supplementary heat supplied by radiant panels, discretely located in the coffers of the concrete tree column structure. These low-profile panels leave space for the integration of high efficiency lighting and sprinkler heads within the coffers.

Other new building systems include new roof-level mechanical penthouses and main electrical rooms in the basement. Together, these systems result in overall operational energy savings of 70% over the existing condition, contributing multiple credits to the project’s LEED Gold designation.

Interior Reconfiguration

In the two towers, Erickson’s open-office concept column grid was restored. Open-plan spaces, modular furniture and sit-stand desks, create a variety of ‘me, we and us’ workspaces. The renewal seamlessly integrates power and data for 21st century digital technologies.

Interconnected spaces on the main floor and the level below, allow the Bank to create a new destination for conferences and events. The latest technology, together with adjacent lounges and integrated food and beverage service, provides support to a wide variety of meeting spaces.

Extensive external plaza works include the construction of a new glass pyramid, which serves as the main entry for the Bank of Canada Museum, which was moved from the Centre Block to the site of a below grade loading dock beneath the plaza. This relocation was necessary in part because the public entrance to the museum had been through the atrium, a space now off-limits to the general public due to the security requirements now imposed on the central banks of G-7 countries.

Jim Taggart, FRAIC is Editor of SABMag.

Demountable wall systems used in the Bank of Canada were provided by Teknion

PROJECT CREDITS

  • Client  Bank of Canada
  • Architect  Perkins+Will
  • Structural Engineer  Adjeleian Allen Rubeli Limited
  • Mechanical/Electrical Engineer  BPA
  • Interior Design  Perkins+Will
  • Landscape Architect  DTAH
  • Sustainability Consultant  Perkins+Will
  • Heritage Consultant  EVOQ Architecture (Formerly FGMDA)
  • Construction Manager  PCL Construction
  • Project Manager CBRE Limited/Project Management Canada
  • Photos  doublespace photography

PROJECT PERFORMANCE

  • Energy intensity = 183 kWh/m² /year
  • Energy savings relative to reference building = 44%
  • Water consumption = 4,645L/occupant/year (based on 250 days of operation)
  • Water savings relative to reference building = 35%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.