UBC AQUATIC CENTRE

Advanced sustainable design strategies improve performance in this challenging building type

Completed In 2017, this 8000m² hybrid competition and community aquatic facility replaces an aging indoor and outdoor pool complex, no longer capable of meeting the University of British Columbia’s changing needs. The challenge was to create a facility that would balance the high-performance training requirements of the university successful competitive swim program, with the increased demand for lessons and leisure opportunities from the rapidly expanding residential communities on campus.

By Jim Taggart

The Aquatic Centre is divided north south into four linear program ‘bars’ – lobby and change rooms, community aquatics, competition aquatics, and bleachers. Daylight is used to differentiate between the two aquatic halls. A line of Y-shaped columns supports a continuous six-metre wide skylight that bisects the aquatic hall, delineating competition and leisure areas. A translucent screen creates a luminescent barrier between the two principal spaces, making it possible to control the uses, and have two different activities or events taking place simultaneously.

The architectural composition consists of three distinct elements: a tessellated standing seam metal roof that hovers over an inclined black concrete base, and is separated from it by a continuous ribbon of fritted glazing. The roof rises and falls according to the functional requirements of the spaces below, its slopes and projections providing rain protection, solar shading, and control of daylight penetration as required. The building has become an integral part of the university’s new student hub, adjacent to the bus loop and a few steps from the new student union building.

As a building type, aquatic centres present some major challenges from the sustainability perspective, including water conservation, air quality, energy optimization, light control and acoustic performance.

Water Conservation

Of these, water conservation is the most significant, standard practice being that pools are emptied and the water discarded every time the pool requires maintenance. For the project team, not only did this seem an outdated practice from an environmental point of view, it also seemed incompatible with UBC’s reputation as a leading proponent of sustainable design.

In fact, water conservation has been an important consideration for the UBC Properties Trust for two decades, with new buildings now required to reduce water consumption by 30% relative to the reference standard. This is part of an overall requirement that all new projects are built to LEED Gold standard.

With the university currently conducting research on regenerative neighbourhoods, the project team began looking for ways in which the building could contribute positively to the infrastructure requirements of the community as a whole.

The answer was to create an underground cistern that could not only collect all the pool water during maintenance, but also supply the fire department should the need arise, or accommodate storm surge water for the north campus precinct, so relieving pressure on the existing storm sewer system.

The cistern, which has a capacity of 900,000 litres, is divided into three compartments according to the amount of filtration required prior to reuse. Another of its functions is to collect rainwater from the roof and the adjacent transit plaza, reusing it for toilet flushing, irrigation and poll top up.

  • PROJECT CREDITS
  • Client  UBC Properties Trust
  • Architects   MJMA & Acton Ostry Architects
  • Photos  Shai Gil; Ema Peter

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

 

BANK OF CANADA RENEWAL

With a total floor area of approximately 79,000m², the Bank of Canada complex occupies an entire city block in Ottawa’s central Parliamentary District. The complex consists of the Classical grey granite Centre Building, designed by Morani, Lawson and Morris and opened in 1938, flanked by two modern glass towers and indoor atrium designed by Arthur Erickson and completed in 1979.

By Jim Taggart

Design Intent

The renewal project was designed to maintain the major architectural components of these historically significant structures, while bringing the facility up to 21st century standards for accessibility, fire and life safety, security and seismic performance. In addition, the interior reconfiguration responds to the client’s desire to reinvigorate its operations by fostering a collaborative workplace culture. Moving away from private workspaces to an open environment, the Interior modifications consciously drive a future thinking workplace that will appeal to the brightest and best of the emerging young workforce.

Physical Renewal

The major physical components of the project included complete interior demolition and fit-up of new office space, new structural concrete shear walls and floor slab infills and new staircase configurations. These changes were strategic in nature, designed to meet the functional criteria in the most unobtrusive way possible.

For example, the careful demolition and replacement of the existing elevator and fire stair core in the office towers with new seismically upgraded versions eliminated the need for the more common, but more visually intrusive strategy of storey height steel cross-bracing installed behind the existing glass curtain wall. The perimeter of each tower floor thus became available for the creation of a 450mm deep ‘dynamic buffer zone’ to improve energy efficiency and environmental control.

With the installation of an interior wall of glass, this zone forms the plenum of a double envelope system that improves thermal performance and permits the pre-conditioning of air before it is distributed through the building. While a conventional suspended ceiling might have achieved the same effect, it would have concealed Erickson’s original exposed concrete structure.

The perimeter buffer zone, combined with a new open plan office configuration, meant that a labyrinth of ductwork could be avoided and supplementary heat supplied by radiant panels, discretely located in the coffers of the concrete tree column structure. These low-profile panels leave space for the integration of high efficiency lighting and sprinkler heads within the coffers.

Other new building systems include new roof-level mechanical penthouses and main electrical rooms in the basement. Together, these systems result in overall operational energy savings of 70% over the existing condition, contributing multiple credits to the project’s LEED Gold designation.

Interior Reconfiguration

In the two towers, Erickson’s open-office concept column grid was restored. Open-plan spaces, modular furniture and sit-stand desks, create a variety of ‘me, we and us’ workspaces. The renewal seamlessly integrates power and data for 21st century digital technologies.

Interconnected spaces on the main floor and the level below, allow the Bank to create a new destination for conferences and events. The latest technology, together with adjacent lounges and integrated food and beverage service, provides support to a wide variety of meeting spaces.

Extensive external plaza works include the construction of a new glass pyramid, which serves as the main entry for the Bank of Canada Museum, which was moved from the Centre Block to the site of a below grade loading dock beneath the plaza. This relocation was necessary in part because the public entrance to the museum had been through the atrium, a space now off-limits to the general public due to the security requirements now imposed on the central banks of G-7 countries.

Jim Taggart, FRAIC is Editor of SABMag.

Demountable wall systems used in the Bank of Canada were provided by Teknion

PROJECT CREDITS

  • Client  Bank of Canada
  • Architect  Perkins+Will
  • Structural Engineer  Adjeleian Allen Rubeli Limited
  • Mechanical/Electrical Engineer  BPA
  • Interior Design  Perkins+Will
  • Landscape Architect  DTAH
  • Sustainability Consultant  Perkins+Will
  • Heritage Consultant  EVOQ Architecture (Formerly FGMDA)
  • Construction Manager  PCL Construction
  • Project Manager CBRE Limited/Project Management Canada
  • Photos  doublespace photography

PROJECT PERFORMANCE

  • Energy intensity = 183 kWh/m² /year
  • Energy savings relative to reference building = 44%
  • Water consumption = 4,645L/occupant/year (based on 250 days of operation)
  • Water savings relative to reference building = 35%

SUBSCRIBE TO THE DIGITAL OR PRINT ISSUE OF SABMAGAZINE FOR THE FULL VERSION OF THIS ARTICLE.

Sustainability: the story from here

2014 AWARD-WINNING PROJECT: Mountain Equipment Co-op Store, North Vancouver