Dedicated to sustainable,
high performance building

Farnham Avenue House

Old ideas and new technologies merge in eco-friendly Toronto infill

Farnham Avenue House is a single-family detached residential infill project. Some of the eco-friendly design aspects are time honoured such as, vertical ventilation and natural daylight shafts, dynamic cross ventilation, passive solar shading, and super insulation. Other features have been around for a long time, but are not that common on a confined city lot, such as geothermal heating and cooling. There are major elements that are reclaimed such as the exterior brick and structural timbers. Numerous locally sourced materials are incorporated. And some components are cutting edge technology, such as the bifacial solar panels tied into the Ontario government’s FIT [Feed-in Tariff] program. This house is a merging of old and new eco friendly architectural technologies.

By Kyle England


First steps
Using an integrated design process where all consultants and the contractor meet at the very start and regularly thereafter saved time and money in the long run, and permitted a broad range of solutions such as integration of active and passive solar strategies, daylighting or incorporation of reclaimed / reused materials.

All existing millwork, plumbing and electrical fixtures, doors and windows from the existing house were recycled through ‘Habitat for Humanity’. Trees/shrubs were transplanted to neighbours during demolition and construction. Over 80% of demolition building waste, such as masonry, lumber, metalwork, and gypsum plaster, was recycled.
The site also needed careful attention to prevent erosion during construction, and plans were made early on the finished site for permeable parking pads to control run-off, use of high reflecting landscaping materials, and placing of vegetable gardens.

The new house
Providing natural light and air was behind the idea of using the three-storey stairwell as a vertical ventilation ‘chimney’ topped with programmable venting skylights. Open concept and/or dynamic partitions allow complete cross ventilation at each level which feeds into the vertical stairwell shaft creating a stackhouse effect. Natural daylight from the skylights can now penetrate the core of house. The energy savings from natural daylight phases well with energy-efficient LED and CFL lighting as day passes into night.

Water conservation, such as on-site rainwater drainage collection to a drywell, which will be eventually be upgraded to a cistern for efficient rainwater re-use, water-conserving fixtures, and use of drought-tolerant native plants, are measures on almost any house.
We used a geothermal system for heating through water-to-water heat pumps and bottom up radiant floor slabs, and geothermal cooling through water-to-air heat pumps, fan coil unit, top down supply air ducts. We also used steam humidification though the air duct system to adjust interior humidity during the dry, cold winter months.


  • Exposed timber joists and decking are reclaimed Douglas fir, with insulated wood-frame walls
  • Renewable soy/vegetable oils and recycled polyethylene [plastic bottles] based foam insulation, and exterior rigid polyiso foam insulation to eliminate thermal bridging
  • Factory-finished wood siding and salvaged brick
  • Bifacial 190W photovoltaic roof modules generating 7kW, high-reflectance exposed roof membrane
  • VELUX programmable venting  sktlights above the stairwell for natural daylight and ventilation
  • Heat pump, geothermal heating and cooling and heat recovery ventilator [HRV], boiler supplies in-floor radiant heating


  • Architect William Dewson Architects
  • Mechanical engineer Hayward HVAC Design
  • Structural engineer Cucco Engineering
  • Construction South Park Design Build
  • Landscape architect Lawrence Park Garden Centre
  • LEED Provider Mindscape Innovations
  • Photos William Dewson Architects

Kyle England is an architect with William Dewson Architects,